Introduction to Tensors POEMA Workshop Florence, 15-17th January, 2020

Giorgio Ottaviani

Università di Firenze

January 17, 2020

Tensors

Let V_i be vector spaces over $K = \mathbb{R}$ or \mathbb{C} . A tensor is an element $f \in V_1 \otimes \ldots \otimes V_k$, that is a multilinear map $V_1^{\vee} \times \ldots \times V_k^{\vee} \to K$ A tensor <u>can be vi</u>sualized as a multidimensional matrix.

Entries of *f* are labelled by *k* indices, as $a_{i_1...i_k}$ For example, in the case $3 \times 2 \times 2$, with obvious notations, the expression in coordinates of a tensor is

 $a_{000}x_0y_0z_0 + a_{001}x_0y_0z_1 + a_{010}x_0y_1z_0 + a_{011}x_0y_1z_1 +$

 $a_{100}x_1y_0z_0 + a_{101}x_1y_0z_1 + a_{110}x_1y_1z_0 + a_{111}x_1y_1z_1 +$

 $a_{200}x_2y_0z_0 + a_{201}x_2y_0z_1 + a_{210}x_2y_1z_0 + a_{211}x_2y_1z_1$

Just as matrices can be cutted in rows or in columns, higher dimensional tensors can be cut in slices

The three ways to cut a $3 \times 2 \times 2$ matrix into parallel slices For a tensor of format $n_1 \times \ldots \times n_k$, there are n_1 slices of format $n_2 \times \ldots \times n_k$.

We can operate adding linear combinations of a slice to another slice, just in the case of rows and columns. This amounts to multiply A of format $n_1 \times \ldots \times n_k$ for $G_1 \in GL(n_1)$, then for $G_i \in GL(n_i)$.

The group acting is quite big $G = GL(n_1) \times \ldots \times GL(n_k).$

The group is big, but not so big ...

Let dim $V_i = n_i$ dim $V_1 \otimes \ldots \otimes V_k = \prod_{i=1}^k n_i \sim n_1^k$ dim $GL(n_1) \times \ldots \times GL(n_k) = \sum_{i=1}^k n_i^2 \sim n_1^2$

For $k \ge 3$, the dimension of the group is in general much less that the dimension of the space where it acts.

This makes a strong difference between the classical case k = 2 (matrices) and the case $k \ge 3$ (tensors).

Basic reference J.M. Landsberg, *Tensors: Geometry and Applications*, AMS, 2012.

We need some "simple" tensors to start with.

Definition

A tensor f is *decomposable* if there exist $x^i \in V_i$ for i = 1, ..., ksuch that $a_{i_1...i_k} = x_{i_1}^1 x_{i_2}^2 ... x_{i_k}^k$. In equivalent way, $f = x^1 \otimes ... \otimes x^k$.

For a (nonzero) usual matrix, decomposable \iff rank one. Define the rank of a tensor t as

$$\operatorname{rk}(t) := \min\{r | t = \sum_{i=1}^{r} t_i, t_i \text{ are decomposable}\}$$

For matrices, this coincides with usual rank.

Weierstrass Theorem about Tensor Decomposition in $n \times n \times 2$ case

Theorem (Weierstrass)

A general tensor t of format $n \times n \times 2$ has a unique tensor decomposition as a sum of n decomposable tensors

There is a algorithm to actually decompose such tensors. We see how it works in a $3 \times 3 \times 2$ example.

Tensor decomposition in a $3 \times 3 \times 2$ example.

We consider the following "random" real tensor

 $f = 6x_0y_0z_0 + 2x_1y_0z_0 + 6x_2y_0z_0$ $- 2014x_0y_1z_0 + 121x_1y_1z_0 - 11x_2y_1z_0$ $+ 48x_0y_2z_0 - 13x_1y_2z_0 - 40x_2y_2z_0$ $- 31x_0y_0z_1 + 93x_1y_0z_1 + 97x_2y_0z_1$ $+ 63x_0y_1z_1 + 41x_1y_1z_1 - 94x_2y_1z_1$ $- 3x_0y_2z_1 + 47x_1y_2z_1 + 4x_2y_2z_1$

We divide into two 3×3 slices, like in

Sum the yellow slice plus *t* times the red slice.

$$f_0 + tf_1 = +t$$

$$f_0 + tf_1 = \begin{pmatrix} -31t + 6 & 63t - 2014 & -3t + 48 \\ 93t + 2 & 41t + 121 & 47t - 13 \\ 97t + 6 & -94t - 11 & 4t - 40 \end{pmatrix}$$

Singular combination of slices

We compute the determinant, which is a cubic polynomial in tdet($f_0 + tf_1$) = 159896 $t^3 - 8746190t^2 - 5991900t - 69830$ with roots $t_0 = -.0118594$, $t_1 = -.664996$, $t_2 = 55.3761$.

This computation gives a "guess" about the three summands for z_i , (note the sign change!)

 $f = A_0(.0118594z_0 + z_1) + A_1(.664996z_0 + z_1) + A_2(-55.3761z_0 + z_1)$

where A_i are 3×3 matrices of rank one, that we have to find. Indeed, we get

 $f_0 + tf_1 = A_0(.0118594 + t) + A_1(.664996 + t) + A_2(-55.3761 + t)$

and for the three roots $t = t_i$ one summand vanishes, it remains a matrix of rank 2, with only two colors, hence with zero determinant.

Finding the three matrices from kernels.

In order to find A_i , let $a_0 = (-.0589718 - .964899 .255916)$, left kernel of $f_0 + t_0 f_1$ let $b_0 = (-.992905 - .00596967 - .118765)$, transpose of right kernel of $f_0 + t_0 f_1$. In the same way, denote $a_1 = \text{left kernel of } f_0 + t_1 f_1, a_2 = \text{left kernel of } f_0 + t_2 f_1$ b_1 = transpose of right kernel of $f_0 + t_1 f_1$, b_2 = transpose of right kernel of $f_0 + t_2 f_1$, $aa = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -.0589718 & -.964899 & .255916 \\ -.014181 & -.702203 & .711835 \\ .959077 & .0239747 & .282128 \end{pmatrix}$ $bb = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} -.992905 & -.00596967 & -.118765 \\ .582076 & -.0122361 & -.813043 \\ .316392 & .294791 & -.901662 \end{pmatrix}$

Now we invert the two matrices							
	.450492	582772	1.06175				
$aa^{-1} =$	-1.43768	.548689	1.06175 0802873				
	(-1.40925)	1.93447	0580488 <i>J</i>				
	(923877	.148851	0125305 3.22958 0575754				
$bb^{-1} =$	986098	-3.43755	3.22958				
	646584	-1.07165	0575754 <i>/</i>				
The first summand A_0 is given by a scalar c_0 multip							

The first summand A_0 is given by a scalar c_0 multiplied by $(.450492x_0 - 1.43768x_1 - 1.40925x_2)(-.923877y_0 - .986098y_1 - .646584y_2)$

the same for the other colors.

Decomposition as sum of three terms

By solving a linear system, we get the scalars c_i (.450492x₀ - 1.43768x₁ - 1.40925x₂)(-.923877y₀ - .986098y₁ - .646584y₂)(.809777z₀ + 68.2814z₁) + (-.582772x₀ + .548689x₁ + 1.93447x₂)(.148851y₀ - 3.43755y₁ - 1.07165y₂)(18.6866z₀ + 28.1003z₁) + (1.06175x₀ - .0802873x₁ - .0580488x₂)(-.0125305y₀ + 3.22958y₁ - .0575754y₂)(-598.154z₀ + 10.8017z₁) and the sum is

$6x_0y_0z_0 + 2x_1y_0z_0$	$+6x_2y_0z_0$
$-2014x_0y_1z_0 + 121x_1y_1z_0$	$-11x_2y_1z_0$
$+48x_0y_2z_0-13x_1y_2z_0$	$-40x_2y_2z_0$
$-31x_0y_0z_1+93x_1y_0z_1$	$+97x_2y_0z_1$
$+63x_0y_1z_1+41x_1y_1z_1$	$-94x_2y_1z_1$
$-3x_0y_2z_1+47x_1y_2z_1$	$+4x_2y_2z_1$

The rank of the tensor f is 3, because we have 3 summands, and no less.

The decomposition we have found is *unique*, up to reordering the summands.

This is a strong difference with the case of matrices, where any decomposition with at least two summands is *never unique*.

For tensors f of rank \leq 2,the characteristic polynomial vanishes identically. We understand this phenomenon geometrically, in a while.

General symmetric tensors of rank *s* fill an open subset of an irreducible projective variety, which is called the *s*-th secant variety to the Veronese variety $v_d(\mathbb{P}^n)$ and it is denoted by $\sigma_s v_d(\mathbb{P}^n)$.

The rational normal curve $v_d(\mathbb{P}^1)$ is called also the moment curve since it has the parametrization

$$(1, t, t^2, \ldots, t^d)$$

1) Tensor Rank may be different from the dimension of image

2) Tensor Rank may be larger than the dimensions of the factors

3) Tensor Rank may increase or a decrease in a limit (for matrices may only decrease)

4) Maximum Tensor rank may be larger than Generic Tensor Rank

5) Tensor Rank may depend on the field

6) Tensor Rank is NP-hard to be computed

7) Tensor Decomposition is in general unique, unless the case of matrices.

See Luca Chiantini talk, this afternoon.

In the case $V_1 = \ldots = V_k = V$ we may consider symmetric tensors $f \in S^d V$.

Elements of $S^d V$ can be considered as homogeneous polynomials of degree d in $x_0, \ldots x_n$, basis of V.

So polynomials have rank (as all tensors) and also symmetric rank (next slides).

Symmetric Tensor Decomposition (Waring)

A Waring decomposition of $f \in S^d V$ is

$$f = \sum_{i=1}^r c_i (I_i)^d \qquad ext{with } I_i \in V$$

with minimal r, which is called the symmetric rank

Example:
$$7x^3 - 30x^2y + 42xy^2 - 19y^3 = (-x + 2y)^3 + (2x - 3y)^3$$

rk $(7x^3 - 30x^2y + 42xy^2 - 19y^3) = 2$

21/40

It is obvious that for a symmetric tensor f we have

 $\operatorname{rank}(f) \leq \operatorname{symmetricrank}(f)$

In 2017 Shitov shocked the tensor community by exhibiting a polynomial f of degree 3 in 800 variables, say a symmetric tensor of format $800 \times 800 \times 800$ such that

```
\operatorname{rank}(f) \le 903 < 904 \le \operatorname{symmetricrank}(f)
```

The tensors where rank and symmetric rank differ are not yet understood. Do they form a set of measure zero ?

• $S^{3}\mathbb{C}^{5}$, where the generic rank is 8, sporadic case

For any $I = \alpha x_0 + \beta x_1 \in \mathbb{C}^2$ we denote $I^{\perp} = -\beta \partial_0 + \alpha \partial_1 \in \mathbb{C}^{2^{\vee}}$. Note that

$$I^{\perp}(I^d) = 0$$
 (1)

so that l^{\perp} is well defined (without referring to coordinates) up to scalar multiples. Let *e* be an integer. Any $f \in S^d \mathbb{C}^2$ defines $C_f^e \colon S^e(\mathbb{C}^{2^{\vee}}) \to S^{d-e}\mathbb{C}^2$ Elements in $S^e(\mathbb{C}^{2^{\vee}})$ can be decomposed as $(l_1^{\perp} \circ \ldots \circ l_e^{\perp})$ for some $l_i \in \mathbb{C}^2$.

Proposition

Let l_i be distinct for i = 1, ..., e. There are $c_i \in K$ such that $f = \sum_{i=1}^{e} c_i(l_i)^d$ if and only if $(l_1^{\perp} \circ \ldots \circ l_e^{\perp})f = 0$

Proof: The implication \implies is immediate from (1). It can be summarized by the inclusion $<(l_1)^d, \ldots, (l_e)^d > \subseteq \ker(l_1^{\perp} \circ \ldots \circ l_e^{\perp})$. The other inclusion follows by dimensional reasons, because both spaces have dimension e. \Box The previous Proposition is the core of the Prony-Sylvester algorithm, because the differential operators killing f allow to define the decomposition of f, as we see in the next slide.

Prony-Sylvester algorithm for Waring decomposition in two variables

Prony-Sylvester algorithm for general f Compute the decomposition of a general $f \in S^d U$

- Pick a generator g of ker C_f^a with $a = \lfloor \frac{d+1}{2} \rfloor$.
- Decompose g as product of linear factors, $g = (l_1^{\perp} \circ \ldots \circ l_r^{\perp})$
- Solve the system $f = \sum_{i=1}^{r} c_i (I_i)^d$ in the unknowns c_i .

Remark When d is odd the kernel is one-dimensional and the decomposition is unique. When d is even the kernel is two-dimensional and there are infinitely many decompositions.

The catalecticant matrices for two variables

If
$$f(x, y) = a_0 x^4 + 4a_1 x^3 y + 6a_2 x^2 y^2 + 4a_3 x y^3 + a_4 y^4$$
 then
 $C_f^1 = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix}$
and
 $C_f^2 = \begin{bmatrix} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \end{bmatrix}$

The catalecticant algorithm at work

The catalecticant matrix associated to $f = 7x^3 - 30x^2 + 42x - 19 = 0$ is

$$A_f = \left[\begin{array}{rrr} 7 & -10 & 14 \\ -10 & 14 & -19 \end{array} \right]$$

ker
$$A_f$$
 is spanned by $\begin{bmatrix} 6\\7\\2 \end{bmatrix}$ which corresponds to
 $6\partial_x^2 + 7\partial_x\partial_y + 2\partial_y^2 = (2\partial_x + \partial_y)(3\partial_x + 2\partial_y)$
Hence the decomposition

$$7x^3 - 30x^2y + 42xy^2 - 19y^3 = c_1(-x + 2y)^3 + c_2(2x - 3y)^3$$

Solving the linear system, we get $c_1=c_2=1$

The singular n-ples (Optimization Problem)

Any tensor $A \in \mathbb{R}^{m_1} \otimes \ldots \otimes \mathbb{R}^{m_d}$ (m_i can be different) defines by contraction a function f_A over the product $S = S^{m_1-1} \times \ldots \times S^{m_d-1}$ of the corresponding spheres.

$$\begin{array}{rcccc} f_A \colon & S & \to & \mathbb{R} \\ & x & \mapsto & A \times x \end{array}$$

In alternative, f_A could be defined over the affine cone of decomposable tensors.

Theorem ([Lim, Qi], Variational principle)

The critical points of f_A corresponds to d-ples $(x_1, \ldots, x_d) \in S$ such that

$$A(x_1,\ldots,\hat{x}_i,\ldots,x_d) = \lambda x_i \qquad \forall i = 1,\ldots,d$$

L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proc. IEEE, (CAMSAP '05), (2005).
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. (2005)

The critical points of the theorem are called singular *d*-ples, or *E*-eigenvectors in the symmetric case ([Hu-Qi]).
S. Hu, L, Qi, *The E-eigenvectors of tensors*, Linear and Multilinear Algebra, (2013)

The euclidean quadratic form $\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$, where $x, y \in \mathbb{R}^m$ is often extended to the complex case as the Hermitian form $\langle x, y \rangle = \sum_{i=1}^{m} x_i \overline{y}_i$, where $x, y \in \mathbb{C}^m$.

To use algebro-geometric techniques it is more convenient to extend it as $\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$, where $x, y \in \mathbb{C}^m$.

This is enough to identify each vector space \mathbb{C}^m with its dual. Moreover the complex orthogonal group $O(m_i, \mathbb{C})$ is acting over any \mathbb{C}^{m_i} . Anyway this "trick" will have some annoying consequences, about transversality, we will see later....

Orthogonal group acts, preserving singular *d*-ples

The group $O(\mathbf{m}, \mathbb{C}) := O(m_1, \mathbb{C}) \times \ldots \times O(m_d, \mathbb{C})$ acts over $\mathbb{C}^{m_1} \otimes \ldots \otimes \mathbb{C}^{m_d}$ in natural way.

Lemma

Let $A \in \mathbb{C}^{m_1} \otimes \ldots \otimes \mathbb{C}^{m_d}$ be a tensor.

$$\begin{array}{c} (x_1, \dots, x_d) \\ \text{is a singular } d\text{-ple of } A \end{array} \right\} \Longleftrightarrow \begin{cases} g \cdot (x_1, \dots, x_d) \\ \text{is a singular } d\text{-ple of } g \cdot A \\ \forall g \in O(\mathbf{m}, \mathbb{C}). \end{cases}$$

For d = 2, tensors correspond to usual matrices A, and singular 2-ples are the classical singular pairs of vectors (x, y) such that

$$Ax = \lambda y$$
 $A^{\top}y = \lambda x$

If A is general matrix of format $m \times n$, it has min(m, n) singular pairs of vectors.

Question How many singular *d*-ples has a general tensor *A* ?

Theorem ([Friedland-O])

The number of singular d-ples of a general tensor A over \mathbb{C} , of format $m_1 \times \ldots \times m_d$, is the coefficient of $\prod_{i=1}^d t_i^{m_i-1}$ in the polynomial

$$\prod_{i=1}^d \frac{\hat{t}_i^{m_i} - t_i^{m_i}}{\hat{t}_i - t_i}$$

where $\hat{t}_i = \sum_{j \neq i} t_j$. We denote this coefficient by $c(m_1, \dots, m_d)$.

• S. Friedland, G. Ottaviani, *The number of singular vector tuples and uniqueness of best rank one approximation of tensors*, Journal Found. Comp. Math. 2014.

Theorem ([Friedland-O])

The number of singular d-ples of a general tensor A over \mathbb{R} of format $m_1 \times \ldots \times m_d$ is $\leq c(m_1, \ldots, m_d)$. Moreover there are no singular d-ples corresponding to zero singular value and all singular d-ples are simple.

Note that $c(m_1, m_2) = \min(m_1, m_2)$. For $d \ge 3$ the numbers $c(m_1, \ldots, m_d)$ are quite large. For example $c(\underbrace{2, \ldots, 2}_d) = d!$.

Let $X = \mathbb{P}(\mathbb{C}^{m_1}) \times \ldots \times \mathbb{P}(\mathbb{C}^{m_d})$ be the projective variety of rank one tensors, called the Segre variety. Let Q_i be the pullback on Xof the quotient bundle from the *i*-th factor.

The singular *d*-ples of a tensor A are zero locus of a section, corresponding to A, of the bundle on X

 $[Q_1 \otimes \mathcal{O}(0, 1, 1, \dots, 1)] \oplus [Q_2 \otimes \mathcal{O}(1, 0, 1, \dots, 1)] \oplus \dots$

where $\mathcal{O}(a_1, \ldots, a_d)$ is the line bundle obtained by tensoring the pullback of $\mathcal{O}(a_i)$ from *i*-th factor.

The formula comes from computing the top Chern class of this bundle. The multiplicity of a d-ple can be defined as the multiplicity in the zero locus of the section corresponding to A.

List of the number $c(m_1, m_2, m_3)$ of singular 3-ples

	$m_2, m_3)$	c(m ₁ ,	m_1, m_2, m_3
	6		2, 2, 2
$m_3 \geq 3$	8		2, 2, <i>m</i> ₃
	15		2, 3, 3
$m_3 \ge 4$	18		2, 3, <i>m</i> ₃
	(2m - 1)	m(2, <i>m</i> , <i>m</i>
$m_3 \ge m_2 + 1$	$2m_{2}^{2}$		$2, m_2, m_3$
	37		3, 3, 3
	55		3, 3, 4
$m_3 \ge 5$	61		3, 3, <i>m</i> ₃
	104		3, 4, 4
	138		3, 4, 5
$m_3 \ge 6$	148		3, 4, <i>m</i> ₃
	225		3, 5, 5
	280		3, 5, 6
$p_{\text{oem}}m_3 \ge 7$	29 <mark>5</mark> 2		3, 5, <i>m</i> ₃
$\frac{M_{\text{productive}}}{m_3} \ge m_2 + 2$	$r_2^2 + \frac{7}{3}m_2^2$	$\frac{8}{3}m_2^3 - 2m$	$3, m_2, m_3$
37 / 40	Tensors	Giorgio Ottaviani	

The boundary format and the diagonal.

The format (of a tensor) $m_1 \times \ldots \times m_d$ with $m_1 \leq \ldots \leq m_d$ is called boundary format if

$$m_d - 1 = \sum_{i=1}^{d-1} (m_i - 1)$$

In the boundary format case it is well defined a unique diagonal given by elements $a_{i_1...i_d}$ satisfying $i_d = \sum_{j=1}^{d-1} i_j$

The number of critical points *stabilizes* for formats larger than boundary format, that is

Corollary ([Friedland-O])

For $m_d - 1 \ge \sum_{i=1}^{d-1} (m_i - 1)$, the number of critical points, from a general tensor to the variety of rank one tensors, does not depend on m_d .

Open question Is there a direct proof of Corollary, without using the formula ?

Thanks !!

Horizon 2020 European Union funding for Research & Innovation

