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Tensors

Let Vi be vector spaces over K = R or C. A tensor is an element
f ∈ V1 ⊗ . . .⊗ Vk , that is a multilinear map V ∨1 × . . .× V ∨k → K
A tensor can be visualized as a multidimensional matrix.

Entries of f are labelled by k indices, as ai1...ik
For example, in the case 3× 2× 2, with obvious notations, the
expression in coordinates of a tensor is

a000x0y0z0 + a001x0y0z1 + a010x0y1z0 + a011x0y1z1+

a100x1y0z0 + a101x1y0z1 + a110x1y1z0 + a111x1y1z1+

a200x2y0z0 + a201x2y0z1 + a210x2y1z0 + a211x2y1z1
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Slices

Just as matrices can be cutted in rows or in columns, higher
dimensional tensors can be cut in slices

The three ways to cut a 3× 2× 2 matrix into parallel slices
For a tensor of format n1 × . . .× nk , there are n1 slices of format
n2 × . . .× nk .
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Multidimensional Gauss elimination

We can operate adding linear combinations of a slice to another
slice, just in the case of rows and columns.
This amounts to multiply A of format n1 × . . .× nk for
G1 ∈ GL(n1), then for Gi ∈ GL(ni ).

The group acting is quite big
G = GL(n1)× . . .× GL(nk).
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The group acting, basic computation of dimensions.

The group is big, but not so big...

Let dimVi = ni
dimV1 ⊗ . . .⊗ Vk =

∏k
i=1 ni ∼ nk1

dimGL(n1)× . . .× GL(nk) =
∑k

i=1 n
2
i ∼ n2

1

For k ≥ 3, the dimension of the group is in general much less that
the dimension of the space where it acts.
This makes a strong difference between the classical case k = 2
(matrices) and the case k ≥ 3(tensors).

Basic reference J.M. Landsberg, Tensors: Geometry and
Applications, AMS, 2012.
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Decomposable tensors, of rank one.

We need some “simple” tensors to start with.

Definition

A tensor f is decomposable if there exist x i ∈ Vi for i = 1, . . . , k
such that ai1...ik = x1

i1
x2
i2
. . . xkik . In equivalent way,

f = x1 ⊗ . . .⊗ xk .

For a (nonzero) usual matrix, decomposable ⇐⇒ rank one.
Define the rank of a tensor t as

rk(t) := min{r |t =
r∑

i=1

ti , ti are decomposable}

For matrices, this coincides with usual rank.
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Weierstrass Theorem about Tensor Decomposition in
n × n × 2 case

Theorem (Weierstrass)

A general tensor t of format n × n × 2 has a unique tensor
decomposition as a sum of n decomposable tensors

There is a algorithm to actually decompose such tensors. We see
how it works in a 3× 3× 2 example.
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Tensor decomposition in a 3× 3× 2 example.

We consider the following “random” real tensor

f =6x0y0z0 +2x1y0z0 + 6x2y0z0

− 2014x0y1z0 +121x1y1z0 − 11x2y1z0

+ 48x0y2z0 −13x1y2z0 − 40x2y2z0

− 31x0y0z1 +93x1y0z1 + 97x2y0z1

+ 63x0y1z1 +41x1y1z1 − 94x2y1z1

− 3x0y2z1 +47x1y2z1 + 4x2y2z1

We divide into two 3× 3 slices, like in

=⇒ z0 +z1
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Two slices

Sum the yellow slice plus t times the red slice.

f0 + tf1 = +t

f0 + tf1 =

−31t + 6 63t − 2014 −3t + 48
93t + 2 41t + 121 47t − 13
97t + 6 −94t − 11 4t − 40
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Singular combination of slices

We compute the determinant, which is a cubic polynomial in t

det(f0 + tf1) = 159896t3 − 8746190t2 − 5991900t − 69830

with roots t0 = −.0118594, t1 = −.664996, t2 = 55.3761.

This computation gives a “guess” about the three summands for
zi , (note the sign change!)

f = A0(.0118594z0 + z1)+A1(.664996z0 + z1)+A2(−55.3761z0 + z1)

where Ai are 3× 3 matrices of rank one, that we have to find.
Indeed, we get

f0 + tf1 = A0(.0118594 + t) +A1(.664996 + t) +A2(−55.3761 + t)

and for the three roots t = ti one summand vanishes, it remains a
matrix of rank 2, with only two colors,
hence with zero determinant.
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Finding the three matrices from kernels.

In order to find Ai , let a0 =
(
−.0589718 −.964899 .255916

)
,

left kernel of f0 + t0f1
let b0 =

(
−.992905 −.00596967 −.118765

)
, transpose of right

kernel of f0 + t0f1.
In the same way, denote
a1 = left kernel of f0 + t1f1, a2 = left kernel of f0 + t2f1
b1 = transpose of right kernel of f0 + t1f1, b2 = transpose of
right kernel of f0 + t2f1,

aa =

a0

a1

a2

 =

−.0589718 −.964899 .255916
−.014181 −.702203 .711835
.959077 .0239747 .282128


bb =

b0

b1

b2

 =

−.992905 −.00596967 −.118765
.582076 −.0122361 −.813043
.316392 .294791 −.901662
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Inversion and summands of tensor decomposition

Now we invert the two matrices

aa−1 =

 .450492 −.582772 1.06175
−1.43768 .548689 −.0802873
−1.40925 1.93447 −.0580488


bb−1 =

−.923877 .148851 −.0125305
−.986098 −3.43755 3.22958
−.646584 −1.07165 −.0575754


The first summand A0 is given by a scalar c0 multiplied by
(.450492x0 − 1.43768x1 − 1.40925x2)(−.923877y0 − .986098y1 −
.646584y2)
the same for the other colors.
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Decomposition as sum of three terms

By solving a linear system, we get the scalars ci
(.450492x0 − 1.43768x1 − 1.40925x2)(−.923877y0 − .986098y1 − .646584y2)(.809777z0 + 68.2814z1) +

(−.582772x0 + .548689x1 + 1.93447x2)(.148851y0 − 3.43755y1 − 1.07165y2)(18.6866z0 + 28.1003z1) +

(1.06175x0 − .0802873x1 − .0580488x2)(−.0125305y0 + 3.22958y1 − .0575754y2)(−598.154z0 + 10.8017z1)

and the sum is

6x0y0z0 + 2x1y0z0 +6x2y0z0

−2014x0y1z0 + 121x1y1z0 −11x2y1z0

+48x0y2z0 − 13x1y2z0 −40x2y2z0

−31x0y0z1 + 93x1y0z1 +97x2y0z1

+63x0y1z1 + 41x1y1z1 −94x2y1z1

−3x0y2z1 + 47x1y2z1 +4x2y2z1

The rank of the tensor f is 3, because we have 3 summands, and
no less.
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Uniqueness of the decomposition

The decomposition we have found is unique, up to reordering the
summands.
This is a strong difference with the case of matrices, where any
decomposition with at least two summands is never unique.

For tensors f of rank ≤ 2,the characteristic polynomial vanishes
identically.
We understand this phenomenon geometrically, in a while.
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The secant variety

General symmetric tensors of rank s fill an open subset of an
irreducible projective variety, which is called the s-th secant variety
to the Veronese variety vd(Pn) and it is denoted by σsvd(Pn).

The rational normal curve vd(P1) is called also the moment curve
since it has the parametrization

(1, t, t2, . . . , td)
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Six differences between matrix rank and tensor rank

1) Tensor Rank may be different from the dimension of image

2) Tensor Rank may be larger than the dimensions of the factors
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Six differences between matrix rank and tensor rank

3) Tensor Rank may increase or a decrease in a limit (for matrices
may only decrease)

4) Maximum Tensor rank may be larger than Generic Tensor Rank
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Six differences between matrix rank and tensor rank

5) Tensor Rank may depend on the field

6) Tensor Rank is NP-hard to be computed
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A seventh difference which marks a point for Tensors !

7) Tensor Decomposition is in general unique, unless the case of
matrices.

See Luca Chiantini talk, this afternoon.
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Symmetric tensors = homogeneous polynomials

In the case V1 = . . . = Vk = V we may consider symmetric tensors
f ∈ SdV .

Elements of SdV can be considered as homogeneous polynomials
of degree d in x0, . . . xn, basis of V .

So polynomials have rank (as all tensors) and also symmetric rank
(next slides).
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Symmetric Tensor Decomposition (Waring)

A Waring decomposition of f ∈ SdV is

f =
r∑

i=1

ci (li )
d with li ∈ V

with minimal r , which is called the symmetric rank

Example: 7x3 − 30x2y + 42xy2 − 19y3 = (−x + 2y)3 + (2x − 3y)3

rk
(
7x3 − 30x2y + 42xy2 − 19y3

)
= 2
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Shitov counterexample

It is obvious that for a symmetric tensor f we have

rank(f ) ≤ symmetricrank(f )

In 2017 Shitov shocked the tensor community by exhibiting a
polynomial f of degree 3 in 800 variables, say a symmetric tensor
of format 800× 800× 800 such that

rank(f ) ≤ 903 < 904 ≤ symmetricrank(f )

The tensors where rank and symmetric rank differ are not yet
understood. Do they form a set of measure zero ?
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Symmetric case: the Alexander-Hirschowitz Theorem

Theorem (
Campbell, Terracini, Alexander-Hirschowitz

[1891] [1916] [1995]
)

The general f ∈ SdCn+1 (d ≥ 3) has rank

d
(n+d

d

)
n + 1

e

which is called the generic rank, with the only exceptions

S4Cn+1, 2 ≤ n ≤ 4, where the generic rank is
(n+2

2

)
S3C5, where the generic rank is 8, sporadic case
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Apolarity and Waring decomposition, I

For any l = αx0 + βx1 ∈ C2 we denote l⊥ = −β∂0 + α∂1 ∈ C2∨.
Note that

l⊥(ld) = 0 (1)

so that l⊥ is well defined (without referring to coordinates) up to
scalar multiples. Let e be an integer. Any f ∈ SdC2 defines
C e
f : Se(C2∨)→ Sd−eC2

Elements in Se(C2∨) can be decomposed as (l⊥1 ◦ . . . ◦ l⊥e ) for
some li ∈ C2.
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Apolarity and Waring decomposition, II

Proposition

Let li be distinct for i = 1, . . . , e. There are ci ∈ K such that
f =

∑e
i=1 ci (li )

d if and only if (l⊥1 ◦ . . . ◦ l⊥e )f = 0

Proof: The implication =⇒ is immediate from (1). It can be
summarized by the inclusion
< (l1)d , . . . , (le)d >⊆ ker(l⊥1 ◦ . . . ◦ l⊥e ). The other inclusion follows
by dimensional reasons, because both spaces have dimension e.
The previous Proposition is the core of the Prony-Sylvester
algorithm, because the differential operators killing f allow to
define the decomposition of f , as we see in the next slide.
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Prony-Sylvester algorithm for Waring decomposition in two
variables

Prony-Sylvester algorithm for general f Compute the
decomposition of a general f ∈ SdU

Pick a generator g of kerC a
f with a = bd+1

2 c.
Decompose g as product of linear factors, g = (l⊥1 ◦ . . . ◦ l⊥r )

Solve the system f =
∑r

i=1 ci (li )
d in the unknowns ci .

Remark When d is odd the kernel is one-dimensional and the
decomposition is unique. When d is even the kernel is
two-dimensional and there are infinitely many decompositions.
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The catalecticant matrices for two variables

If f (x , y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4 then

C 1
f =

[
a0 a1 a2 a3

a1 a2 a3 a4

]
and

C 2
f =

 a0 a1 a2

a1 a2 a3

a2 a3 a4
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The catalecticant algorithm at work

The catalecticant matrix associated to
f = 7x3 − 30x2 + 42x − 19 = 0 is

Af =

[
7 −10 14

−10 14 −19

]

kerAf is spanned by

 6
7
2

 which corresponds to

6∂2
x + 7∂x∂y + 2∂2

y = (2∂x + ∂y )(3∂x + 2∂y )

Hence the decomposition

7x3 − 30x2y + 42xy2 − 19y3 = c1(−x + 2y)3 + c2(2x − 3y)3

Solving the linear system, we get
c1 = c2 = 1
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The singular n-ples (Optimization Problem)

Any tensor A ∈ Rm1 ⊗ . . .⊗ Rmd (mi can be different) defines by
contraction a function fA over the product
S = Sm1−1 × . . .× Smd−1 of the corresponding spheres.

fA : S → R
x 7→ A× x

In alternative, fA could be defined over the affine cone of
decomposable tensors.

Theorem ([Lim, Qi], Variational principle)

The critical points of fA corresponds to d-ples (x1, . . . , xd) ∈ S
such that

A(x1, . . . , x̂i , . . . , xd) = λxi ∀i = 1, . . . , d
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References and notations

• L.-H. Lim, Singular values and eigenvalues of tensors: a
variational approach, Proc. IEEE, (CAMSAP ’05), (2005).
• L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic
Comput. (2005)

The critical points of the theorem are called singular d-ples, or
E -eigenvectors in the symmetric case ([Hu-Qi]).
• S. Hu, L, Qi, The E-eigenvectors of tensors, Linear and
Multilinear Algebra, (2013)
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Passage to complex numbers.

The euclidean quadratic form < x , y >=
∑m

i=1 xiyi , where
x , y ∈ Rm is often extended to the complex case as the Hermitian
form < x , y >=

∑m
i=1 xiy i , where x , y ∈ Cm.

To use algebro-geometric techniques it is more convenient to
extend it as < x , y >=

∑m
i=1 xiyi , where x , y ∈ Cm.

This is enough to identify each vector space Cm with its dual.
Moreover the complex orthogonal group O(mi ,C) is acting over
any Cmi . Anyway this “trick” will have some annoying
consequences, about transversality, we will see later....

Giorgio Ottaviani Tensors 31 / 40



Orthogonal group acts, preserving singular d-ples

The group O(m,C) := O(m1,C)× . . .× O(md ,C) acts over
Cm1 ⊗ . . .⊗ Cmd in natural way.

Lemma

Let A ∈ Cm1 ⊗ . . .⊗ Cmd be a tensor.

(x1, . . . , xd)
is a singular d-ple of A

}
⇐⇒


g · (x1, . . . , xd)
is a singular d-ple of g · A
∀g ∈ O(m,C).
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Two-dimensional case

For d = 2, tensors correspond to usual matrices A, and singular
2-ples are the classical singular pairs of vectors (x , y) such that

Ax = λy A>y = λx

If A is general matrix of format m × n, it has min(m, n) singular
pairs of vectors.

Question How many singular d-ples has a general tensor A ?

Giorgio Ottaviani Tensors 33 / 40



The number of singular d-ples

Theorem ([Friedland-O])

The number of singular d-ples of a general tensor A over C, of
format m1 × . . .×md , is the coefficient of

∏d
i=1 t

mi−1
i in the

polynomial
d∏

i=1

t̂i
mi − tmi

i

t̂i − ti

where t̂i =
∑

j 6=i tj .
We denote this coefficient by c(m1, . . . ,md).

• S. Friedland, G. Ottaviani, The number of singular vector tuples
and uniqueness of best rank one approximation of tensors, Journal
Found. Comp. Math. 2014.
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The real case

Theorem ([Friedland-O])

The number of singular d-ples of a general tensor A over R of
format m1 × . . .×md is ≤ c(m1, . . . ,md). Moreover there are no
singular d-ples corresponding to zero singular value and all singular
d-ples are simple.

Note that c(m1,m2) = min(m1,m2). For d ≥ 3 the numbers
c(m1, . . . ,md) are quite large. For example c(2, . . . , 2︸ ︷︷ ︸

d

) = d!.
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The proof needs Chern classes on Segre variety.

Let X = P(Cm1)× . . .× P(Cmd ) be the projective variety of rank
one tensors, called the Segre variety. Let Qi be the pullback on X
of the quotient bundle from the i-th factor.
The singular d-ples of a tensor A are zero locus of a section,
corresponding to A, of the bundle on X
[Q1 ⊗O(0, 1, 1, . . . , 1)]⊕ [Q2 ⊗O(1, 0, 1, . . . , 1)]⊕ . . .
where O(a1, . . . , ad) is the line bundle obtained by tensoring the
pullback of O(ai ) from i-th factor.
The formula comes from computing the top Chern class of this
bundle. The multiplicity of a d-ple can be defined as the
multiplicity in the zero locus of the section corresponding to A.
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List of the number c(m1,m2,m3) of singular 3-ples

m1,m2,m3 c(m1,m2,m3)

2, 2, 2 6
2, 2,m3 8 m3 ≥ 3

2, 3, 3 15
2, 3,m3 18 m3 ≥ 4
2,m,m m(2m − 1)

2,m2,m3 2m2
2 m3 ≥ m2 + 1

3, 3, 3 37
3, 3, 4 55

3, 3,m3 61 m3 ≥ 5
3, 4, 4 104
3, 4, 5 138

3, 4,m3 148 m3 ≥ 6
3, 5, 5 225
3, 5, 6 280

3, 5,m3 295 m3 ≥ 7
3,m2,m3

8
3m

3
2 − 2m2

2 + 7
3m2 m3 ≥ m2 + 2

4, 4, 4 240
4, 4, 5 380
4, 4, 6 460
4, 4, n 480 n ≥ 7
4, 5, 5 725
4, 5, 6 1030
4, 5, 7 1185
4, 5, n 1220 n ≥ 8
5, 5, 5 1621
5, 5, 6 2671
5, 5, 7 3461
5, 5, 8 3811
5, 5, n 3881 n ≥ 9
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The boundary format and the diagonal.

The format (of a tensor) m1 × . . .×md with m1 ≤ . . . ≤ md is
called boundary format if

md − 1 =
d−1∑
i=1

(mi − 1)

In the boundary format case it is well defined a unique diagonal
given by elements ai1...id satisfying id =

∑d−1
j=1 ij

(indices start from zero)
In d = 2 case, boundary format
means square.
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Stabilization beyond boundary format.

The number of critical points stabilizes for formats larger than
boundary format, that is

Corollary ([Friedland-O])

For md − 1 ≥
∑d−1

i=1 (mi − 1), the number of critical points, from a
general tensor to the variety of rank one tensors, does not depend
on md .

Open question Is there a direct proof of Corollary, without using
the formula ?
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Thanks

Thanks !!
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