Polynomial Optimization Sums of squares and moments Part 1

Monique Laurent

POEMA 1st Workshop – Florence, January 2020

What is polynomial optimization?

(P) Minimize a polynomial function f over a region $K = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$ defined by polynomial inequalities

 \rightsquigarrow K is a basic closed semialgebraic set

Some hard instances

Testing nonnegative polynomials: $f \ge 0$ on K? The unconstrained quadratic case is easy:

• A symmetric matrix M is **positive semidefinite** $(M \succeq 0)$ if and only if $f_M = x^T M x \ge 0$ on \mathbb{R}^n

Can test whether $M \succeq 0$ in **polynomial time**, using Gaussian elimination

The quartic case is hard:

• A symmetric matrix M is **copositive** if $f_M = x^T M x \ge 0$ on \mathbb{R}^n_+ Equivalently, the polynomial $F_M = \sum_{i,j=1}^n M_{ij} x_i^2 x_j^2$ is nonnegative over \mathbb{R}^n Testing matrix copositivity is co-NP complete [Kabadi-Murty 1987]

• A polynomial f is **convex** if and only if its Hessian matrix $H_f(x) = (\partial^2 f(x)/\partial x_i \partial x_j)_{i,j=1}^n$ is positive semidefinite Equivalently, the polynomial $y^T H_f(x)y$ is nonnegative over $\mathbb{R}^n \times \mathbb{R}^n$

Testing convexity is NP-hard [Ahmadi et al. 2013]

Some hard combinatorial problems over graphs

$$\alpha = 4, \ \omega = 2, \ \chi = 3$$

• stability number $\alpha(G)$:

maximum cardinality of a set of pairwise **non-adjacent** vertices (stable set)

• clique number $\omega(G)$:

maximum cardinality of a set of pairwise adjacent nodes (clique)

• coloring number $\chi(G)$:

minimum number of colors needed to properly color the vertices of G

Computing $\alpha(G)$, $\omega(G)$, $\chi(G)$ is hard NP-complete [Karp 1972]

Easy relations: $\omega(G) \leq \chi(G)$ and $\omega(G) = \alpha(\overline{G})$

Reducing coloring to the stability number

G is 3-colorable $G \square K_3$ has a stable set of cardinality |V(G)|

 $\chi(G)$ is the smallest integer *c* such that $\alpha(G \square K_c) = |V(G)|$

Polynomial optimization formulations for $\alpha(G)$

• Basic formulation:

$$\alpha(G) = \max \sum_{v \in V} x_v \text{ s.t. } x_u x_v = 0 \text{ } (uv \in E), \ x_v^2 = x_v \text{ } (v \in V)$$

• Motzkin-Straus formulation:

$$\frac{1}{\alpha(G)} = \min \ x^{T}(I + A_{G})x \ \text{ s.t. } \ \sum_{v \in V} x_{v} = 1, \ x_{v} \ge 0 \ (i \in V)$$

• Copositive formulation:

$$\alpha(G) = \min \lambda$$
 s.t. $\lambda(I + A_G) - J$ is copositive

A first bound for $\alpha(G)$ and $\chi(G)$

The **theta number** [Lovász 1979] of a graph G = (V = [n], E):

$$\vartheta(G) = \max_{X \in \mathcal{S}^n} \langle J, X \rangle \text{ s.t. } X_{uv} = 0 \ \forall uv \in E, \ Tr(X) = 1, \ X \succeq 0$$

~> expressed via a semidefinite program

 \rightsquigarrow can be computed in polynomial time (to arbitrary precision)

(Lovász sandwich) Theorem: $\alpha(G) \leq \vartheta(G) \leq \chi(\overline{G})$

How to get stronger bounds?

What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization over the cone of positive semidefinite matrices.

I P SDP vector variable $x \in \mathbb{R}^n \quad \rightsquigarrow \quad$ symmetric matrix variable $X \in S^n$ $X \succeq 0$ [positive semidefinite] x > 0 $\begin{array}{c|c} \mathsf{max}_{x} & \langle c, x \rangle \\ \mathsf{s.t.} & \langle a_{j}, x \rangle = b_{j} \quad (j = 1, \dots, m) \end{array}$ x > 0 $\begin{array}{c|c} \mathsf{SDP} & \mathsf{sup}_X & \langle C, X \rangle \\ & \mathsf{s.t.} & \langle A_j, X \rangle = b_j \quad (j = 1, \dots, m) \end{array}$ $X \succ 0$

Input data: $b_j \in \mathbb{R}$, $c, a_j \in \mathbb{R}^n$, inner product $\langle c, x \rangle = c^{\mathsf{T}}x = \sum_{i=1}^n c_i x_i$ $C, A_j \in S^n$, with trace inner product: $\langle C, X \rangle = Tr(C^{\mathsf{T}}X) = \sum_{i,j=1}^n C_{ij}X_{ij}$

Geometrically

LP

SDP

Optimization over a polyhedron

a spectrahedron

SDP duality

(D) $\begin{array}{c|c} \textbf{SDP (dual form):} \\ d^* := & \inf_{y \in \mathbb{R}^m} & b^\mathsf{T}y \\ & \text{s.t.} & \sum_{j=1}^m y_j A_j - C \succeq 0 \end{array}$

Theorem:

- Weak duality: *p*^{*} ≤ *d*^{*}
- Strong duality: $p^* = d^*$ holds in any of the two cases:
 - 1. (D) is **bounded** $(d^* > -\infty)$ and **strictly feasible** $(\exists y \text{ with } \sum_{j=1}^m y_j A_j C \succ 0)$; then (P) has an optimal solution (sup is max)
 - (P) is bounded (p^{*} < ∞) and strictly feasible (∃X ≥ 0 primal feasible); then (D) has an optimal solution (inf is min).

Example

Recall the SDP defining the theta number $\vartheta(G)$:

Primal SDP:
(P) max
$$\langle J, X \rangle$$
 s.t. $Tr(X) = 1$, $X_{ij} = 0$ $(ij \in E(G))$, $X \succeq 0$
Dual SDP:
(D) min y s.t. $yl + \sum_{ij \in E} z_{ij}E_{ij} - J \succeq 0$

Observations:

- both (P) and (D) are strictly feasible and bounded
- One can reformulate $\vartheta(G)$ as

$$\vartheta(G) = \min y \text{ s.t. } yl + Z - J \succeq 0, \ Z_{ij} = 0 \text{ if } i = j \text{ or } ij \in E(\overline{G})$$

$$\vartheta(G) = \min y \text{ s.t. } yI - B \succeq 0, \ B_{ij} = 1 \text{ if } i = j \text{ or } ij \in E(\overline{G})$$

$$\vartheta(G) = \min \ \lambda_{\max}(B) \ \text{ s.t. } B_{ij} = 1 \ \text{if } i = j \ \text{or } ij \in E(\overline{G})$$

Algorithms for LP vs. SDP

1940's: Dantzig simplex algorithm for LP.
Works well in practice, but is it efficient (= poly-time)?
1980's: efficient algorithms for LP and SDP:
Khachiyan: ellipsoid method (not practical)
Karmarkar, Nemirovski-Nesterov: interior-point algorithms (practical)

LP is widely used, also in industrial applications.

SDP has a greater modeling power:

- combinatorial optimization
- sums of squares of polynomials
- quantum information
- many more ...

[approximation algorithms] [real algebraic geometry] Testing sums of squares of polynomials with SDP

 $f(x) = \sum f_{\alpha}x^{\alpha}$ is a sum of squares of polynomials $|\alpha| \leq 2d$ $f(x) = \sum_{i} p_i(x)^2$ 1 $f(x) = \sum_{i} [x]_{d}^{T} \overline{p_{i}} \overline{p_{i}}^{T} [x]_{d} = [x]_{d}^{T} \left(\sum_{i} \overline{p_{i}} \overline{p_{i}}^{T} \right) [x]_{d}$ ⚠ The SDP: $\begin{cases} \sum_{\beta,\gamma|\beta+\gamma=\alpha} X_{\beta,\gamma} = f_{\alpha} \quad (|\alpha| \le 2d) \\ x \succ 0 \end{cases}$ is feasible

Gram-matrix method [Powers-Wörmann 1998]

Example

 $f(x, y) = x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + 2y^4$ is SOS?

$$f(x,y) = (x^2 xy y^2) \underbrace{\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}}_{X \succeq 0?} \begin{pmatrix} x^2 \\ xy \\ y^2 \end{pmatrix}$$

Equate coefficients on both sides:

 x^4 : a = 1 x^3y : 2b = 2 x^2y^2 : 2c + d = 3 xy^3 : 2e = 2 y^4 : f = 2

$$X = \begin{pmatrix} 1 & 1 & c \\ 1 & 3 - 2c & 1 \\ c & 1 & 2 \end{pmatrix} \succeq 0 \iff -1 \le c \le 1$$

$$c = -1 \rightsquigarrow f = (x^2 + xy - y^2)^2 + (y^2 + 2xy)^2$$

$$c = 0 \rightsquigarrow f = (x^2 + xy)^2 + \frac{3}{2}(xy + y^2)^2 + \frac{1}{2}(xy - y^2)^2$$

General approach to polynomial optimization

Strategy

$$(\mathbf{P}) \qquad f_{\min} = \min_{x \in K} f(x)$$

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000-)

Such relaxations can be constructed using

representations of nonnegative polynomials as sums of squares

and

the dual theory of moments

Sums of squares approach

Strategy (use sums of squares)

(P)
$$f_{\min} = \min_{x \in K} f(x) = \sup_{\lambda \in \mathbb{R}} \lambda \text{ s.t. } f(x) - \lambda \ge 0 \ \forall x \in K$$

Testing whether a polynomial f is nonnegative is hard

but one can test the *sufficient condition*:

f is a sum of squares of polynomials (SOS)

using semidefinite programming

Are all nonnegative polynomials SOS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials if and only if n = 1, or d = 2, or (n = 2 and d = 4).

Hilbert's 17th problem [1900]: *Is every nonnegative polynomial a sum of squares of* **rational** *functions?*

Artin [1927]: Yes

Motzkin [1967]: $p = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ is nonnegative on \mathbb{R}^2 , **not** a sum of squares, but $(x^2 + y^2)^2 p$ is SOS!

Another example

Horn matrix:

$$M = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix} \quad \rightsquigarrow \quad F_{M} = \sum_{i,j=1}^{5} M_{ij} x_{i}^{2} x_{j}^{2}$$

• *M* is copositive, i.e., F_M is nonnegative

F_M is not a sum of squares (M is not psd)

• $(\sum_{i=1}^{5} x_i^2) F_M$ is a sum of squares

$$(\sum_{i=1}^{5} x_i^2) f_{\mathsf{M}} = x_1^2 (x_1^2 - x_2^2 + x_3^2 + x_4^2 - x_5^2)^2 + x_2^2 (x_2^2 - x_3^2 + x_4^2 + x_5^2 - x_1^2)^2 + x_3^2 (x_3^2 - x_4^2 + x_5^2 + x_1^2 - x_2^2)^2 + x_4^2 (x_4^2 - x_5^2 + x_1^2 + x_2^2 - x_3^2)^2 + x_5^2 (x_5^2 - x_1^2 + x_2^2 + x_3^2 - x_4^2)^2 + 4 (x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_5^2 + x_3^2 x_4^2 x_1^2 + x_4^2 x_5^2 x_2^2 + x_5^2 x_1^2 x_3^2)$$

[Parrilo 2000]

Many sums of squares ?

Theorem: [Blekherman 2003] Few SOS polynomials

when fixing the degree and letting the number of variables grow:

$$\frac{\operatorname{vol}(\operatorname{POS}_{n,2d})}{\operatorname{vol}(\operatorname{SOS}_{n,2d})} = \Theta(n^{\frac{d-1}{2}D}) \qquad [D = \binom{n+2d-1}{2d} - 1]$$

Theorem: [Lasserre 2006] [Lasserre-Netzer 2006] SOS polynomials are **dense** within nonnegative polynomials, when fixing the number of variables and letting the degree grow:

If $f \ge 0$ on $[-1,1]^n$, then

 $\forall \epsilon > 0 \; \exists k \in \mathbb{N} \; \text{ such that } \; f + \epsilon \left(1 + \sum_{i=1}^{n} x_i^{2k}\right) \; \text{ is SOS}$

Positivity certificates over K

$$K = \{x \mid g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$
 $\mathbf{g} = \{g_1, \dots, g_m\}$

Quadratic module: $\mathcal{M}(\mathbf{g}) = \{s_0 + s_1g_1 + \ldots + s_mg_m \mid s_j \text{ SOS}\}$ Preordering: $\mathcal{P}(\mathbf{g}) = \{\sum_{e \in \{0,1\}^m} s_eg_1^{e_1} \cdots g_m^{e_m} \mid s_e \text{ SOS}\} \supseteq \mathcal{M}(\mathbf{g})$

Theorem: Assume K is compact. 1. [Schmüdgen'91] f > 0 on $K \Longrightarrow f \in \mathcal{P}(\mathbf{g}) \Longrightarrow f \ge 0$ on K

2. [Putinar'93] Archimedean cond.: $R^2 - \sum_{i=1}^n x_i^2 \in \mathcal{M}(\mathbf{g})$ for some R > 0. f > 0 on $K \implies f \in \mathcal{M}(\mathbf{g}) \implies f \ge 0$ on K

Positivstellensatz for general *K* [Krivine 1964, Stengle 1974]

f > 0 on $K \iff \exists p, q \in \mathcal{P}(\mathbf{g}) \quad pf = q + 1$

 $f \ge 0$ on $K \iff \exists p, q \in \mathcal{P}(\mathbf{g}) \ \exists k \in \mathbb{N} \ pf = f^{2k} + q$

SOS relaxations for (P)

Truncated quadratic module:

$$\mathcal{M}(g)_{2t} := \{\underbrace{s_0}_{\deg \leq 2t} + \underbrace{s_1g_1}_{\deg \leq 2t} + \ldots + \underbrace{s_mg_m}_{\deg \leq 2t} \mid s_j \text{ SOS}\}$$

Replace

(P)
$$f_{\min} = \inf_{x \in K} f(x) = \sup \lambda \text{ s.t. } f - \lambda \ge 0 \text{ on } K$$

by

(SOSt)
$$f_{\text{sos},t} = \sup \lambda \text{ s.t. } f - \lambda \in \mathcal{M}(g)_{2t}$$

- ▶ $f_{\text{sos},t} \leq f_{\text{sos},t+1} \leq f_{\text{min}}$, $f_{\text{sos},t}$ can be computed with SDP
- ► If K compact (+ Archimedean), then asymptotic convergence: $\lim_{t\to\infty} f_{sos,t} = f_{min}$ [Lasserre 2001]

Moment approach

 $f_{\min} = \inf_{x \in K} f(x) = \inf_{\mu} \int_{K} f(x) d\mu \text{ s.t. } \mu \text{ is a probability measure on } K$ $= \inf_{L \in \mathbb{R}[x]^{*}} L(f) \text{ s.t. } L \text{ has a representing measure } \mu \text{ on } K$

 μ is a **representing measure** of *L* on *K* if $L(p) = \int_{K} p(x) d\mu(x)$ for all $p \in \mathbb{R}[x]$

Deciding if a linear functional $L \in \mathbb{R}[x]^*$ has a representing measure μ on K

is the (difficult, classical) moment problem

But one can use the (easier) necessary condition:

L is nonnegative on the quadratic module $\mathcal{M}(g) = \{s_0 + \sum_i s_j g_j : s_j \text{ SOS}\}$:

 $L(p^2) \ge 0$, $L(p^2g_j) \ge 0$ for all $p \in \mathbb{R}[x]$ and $j \in [m]$

Moment matrices

 $L \in \mathbb{R}[x]^*$ is determined by its values on the monomial base:

$$L: \qquad \begin{array}{ccc} \mathbb{R}[x] & \to & \mathbb{R} \\ & x^{\alpha} & \mapsto & \mathcal{L}(x^{\alpha}) =: y_{\alpha} \\ & f = \sum_{\alpha} f_{\alpha} x^{\alpha} & \mapsto & \mathcal{L}(f) = \sum_{\alpha} f_{\alpha} y_{\alpha} = \overline{f}^{\mathsf{T}} y \end{array}$$

Moment matrix: $M(y) := (L(x^{\alpha}x^{\beta}))_{\alpha,\beta\in\mathbb{N}^n} = (y_{\alpha+\beta})_{\alpha,\beta\in\mathbb{N}^n}$

Localizing moment matrix: $M(gy) = (L(g(x)x^{\alpha}x^{\beta}))_{\alpha,\beta} = (\sum_{\gamma} g_{\gamma}y_{\alpha+\beta+\gamma})_{\alpha,\beta}$

L is nonnegative on the quadratic module $\mathcal{M}(g) = \{s_0 + \sum_j s_j g_j : s_j \text{ SOS}\}$:

$$L(p^2) \geq 0 \quad \forall p \quad \Longleftrightarrow \quad M(y) \succeq 0$$

and, for all j, $L(g_j p^2) \ge 0 \quad \forall p \iff M(g_j y) \succeq 0$

Key facts: $L(p^2) = \overline{p}^{\mathsf{T}} M(y) \overline{p}, \quad L(gp^2) = \overline{p}^{\mathsf{T}} M(gy) \overline{p}$

Examples

For n = 1, $M_t(y)$ is a **Hankel matrix**:

$$\begin{pmatrix} 1 & x & x^2 & x^3 \\ x & x^2 & x^3 & x^4 \\ x^2 & x^3 & x^4 & x^5 \\ x^3 & x^4 & x^5 & x^6 \end{pmatrix} \quad \rightsquigarrow \quad M_3(y) = \begin{pmatrix} y_0 & y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 & y_4 \\ y_2 & y_3 & y_4 & y_5 \\ y_3 & y_4 & y_5 & y_6 \end{pmatrix}$$

For n = 2, $M_t(y)$ is of **Hankel type**:

Moment relaxations for (P)

(P) $\int_{L \in \mathbb{R}[x]^*} f_{\min} = \inf_{L \in \mathbb{R}[x]^*} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree 2t: (MOMt)

 $f_{\text{mom},t} = \inf_{L \in \mathbb{R}[x]_{+}^{*}} L(f) \text{ s.t. } L \ge 0 \text{ on } \mathcal{M}(g)_{2t}$ $= \inf_{y=(y_{\alpha})_{|\alpha|\leq 2t}} \overline{f}^{\mathsf{T}} y \quad \text{s.t.} \quad M_t(y) \succeq 0, \quad M_{t-d_j}(g_j y) \succeq 0 \quad \forall j \in [m]$

(SOSt)
$$f_{sos,t} = \sup \lambda \text{ s.t. } f - \lambda \in \mathcal{M}(g)_{2t} \longrightarrow \text{dual SDP}$$

$$f_{\mathrm{sos},t} \leq f_{\mathrm{mom},t} \leq f_{\mathrm{min}}$$

Asymptotic convergence if *K* is compact [+ Archimedean condition]

Optimality criterion for moment relaxation (MOMt)

$$\mathcal{K} = \{x \mid g_1(x) \geq 0, \ldots, g_m(x) \geq 0\}$$

$$d_{K} = \max_{j} \lceil \deg(g_{j})/2 \rceil$$

Theorem [CF 1996,2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008] Assume y is an optimal solution of (MOMt) such that rank $M_s(y) = \operatorname{rank} M_{s-d_K}(y)$ for some $d_K \leq s \leq t$ • Then the relaxation is **exact**: $f_{\operatorname{mom},t} = f_{\min}$

• Moreover, one can compute the global minimizers:

 $V_{\mathbb{C}}(\operatorname{Ker} M_{s}(y)) \subseteq \{ \text{ global minimizers of } f \text{ on } K \},\$

with equality if rank $M_t(y)$ is maximum (rank = # minimizers)

Remarks

► Many interior point algs for SDP give a **max rank** optimal solution

 Algorithm for computing the (finitely many) real roots of polynomial equations (and real radical ideals)

[Lasserre-L-Rostalski 2008,2009]

- Finite convergence holds generically [Nie 2013]
- Finite convergence in the convex case

[Lasserre 2009, de Klerk-L 2011]

 Several implementations: GloptiPoly [Henrion-Lasserre], SOSTOOLS [Prajna et al.], SparsePOP [Waki et al.], YALMIP [Löfberg]

Exploiting sparsity structure

For $I \subseteq [n] x_I := (x_i)_{i \in I}$ denotes the group of variables indexed by I. Consider sets $I_1, \ldots, I_L \subseteq [n]$ for which the polynomials p, g_j satisfy: 1. $p = p_1 + \ldots + p_L$, where each $p_\ell \in \mathbb{R}[x_{I_\ell}]$

2. Each g_j belongs to some $\mathbb{R}[x_{I_\ell}]$

Define the (weaker) bound: $\widehat{p_t^{\text{sos}}} = \sup \lambda \text{ s.t. } p - \lambda = s + \sum_{j=1}^m s_j g_j$, where $s = \sum_{\ell=1}^L s_\ell$ with $s_\ell \in \Sigma[x_{l_\ell}]_{2t}$, and $s_j \in \Sigma[x_{l_\ell}]$ if $g_j \in \mathbb{R}[x_{l_\ell}]$

Then, $\widehat{p_t^{sos}} \le p_t^{sos} \le p_{min}$ but $\widehat{p_t^{sos}}$ involves **smaller** psd matrices!

Theorem: [Lasserre 2006, Grimm-Netzer-Schweighofer 2007] Assume the sets I_1, \ldots, I_L satisfy the **running intersection property** (up to reordering):

$$\forall k \geq 2 \ \exists k_0 \leq k-1 \ \text{s.t.} \ I_k \cap (I_1 \cup \ldots \cup I_{k-1}) \subseteq I_{k_0}$$

and, for each $l \leq L$, the polynomials g_j using variables in I_l generate an Archimedean quadratic module.

Then $\lim_{t\to\infty}\widehat{p_t^{sos}} = p_{\min}$.

Example

• The polynomial

$$p(x) = \sum_{i=1}^{n-3} (x_i + 10x_{i+1})^2 + 5(x_{i+2} - x_{i+3})^2 + (x_{i+1} - 2x_{i+2})^4 + 10(x_i - 10x_{i+3})^4$$

has sparsity structure satisfying (RIP) for the sets

$$I_{\ell} = \{\ell, \ell+1, \ell+2, \ell+3\}$$
 for $\ell = 1, \dots, n-3$

• The polynomial

$$p(x) = \sum_{i=2}^{n} (a_i x_1 + b_i x_i)^4$$

has sparsity structure satisfying (RIP) for the sets

$$I_\ell = \{x_1, x_\ell\}$$
 for $\ell = 2, \dots, n$

Exploiting equations: binary polynomial optimization Back to the stability number $\alpha(G)$

$$\alpha(G) = \max \ p(x) := \sum_{i=1}^{n} x_i \text{ s.t. } x_i x_j = 0 \ (ij \in E), \ x_i^2 = x_i \ (i \in [n])$$

Define the ideal \mathcal{I}^{G} (and its truncations $\mathcal{I}_{t}^{\mathsf{G}}$):

$$\mathcal{I}^{G} = (\{x_{i}x_{j} : ij \in E\} \cup \{x_{i}^{2} - x_{i} : i \in [n)\})$$

Moment bound of order *t*:

$$\begin{aligned} & \text{las}_t(G) := \max_{L \in (\mathbb{R}[x]_{2t})^*} L(p) \text{ s.t. } L(1) = 1, \ L \ge 0 \text{ on } \Sigma_{2t}, \ L = 0 \text{ on } \mathcal{I}_{2t}^G \\ & = \max \sum_{i=1}^n y_i \text{ s.t. } y_0 = 1, \ M_t(y) \succeq 0, \ L_y = 0 \text{ on } \mathcal{I}_{2t}^G \end{aligned}$$

Lemma: Assume y is feasible for the moment bound of order t.

- 1. y_{α} depends only on the support $I = \{i \in [n] : \alpha_i \ge 1\}$ of $\alpha \rightarrow rename y_{\alpha}$ as z_I .
- 2. $M_t(y)$ is a flat extension of $M_n(y)$ if $t \ge n+1$
- 3. $M_t(y)$ is a flat extension of $M_t^{01}(z) := (z_{I\cup J})_{|I|,|J|\leq t}$.

More economical reformulation of the moment bound $las_t(G)$:

$$\max \sum_{i=1}^{n} z_i \text{ s.t. } z_{\emptyset} = 1, \ \mathcal{M}_t^{01}(z) \succeq 0, \ z_I = 0 \text{ if } I \text{ contains an edge}$$

Facts:

1. The bound of order 1 is the **theta number**: $las_1(G) = \vartheta(G)$

2. The bound of order
$$t = \alpha(G)$$
 is exact:
 $las_t(G) = \alpha(G)$ if $t \ge \alpha(G)$.

Such more economical reformulation extends to any polynomial optimization problem over {0,1}ⁿ (or {±1}ⁿ)

Observation: This extends to $K \subseteq V_{\mathbb{C}}(I)$, where $V_{\mathbb{C}}(I)$ is finite. Then, finite convergence holds and one gets a SDP reformulation for p_{\min} using matrices of size $N = \dim \mathbb{R}[x]/I$

Key idea: Work in the quotient space $\mathbb{R}[x]/I$ instead of $\mathbb{R}[x]$.

Extension to the general moment problem (GMP)

The general moment problem (GMP)

$$\operatorname{val} := \inf_{\mu} \int_{\mathcal{K}} f_0 d\mu(x) \text{ s.t. } \int_{\mathcal{K}} f_k(x) d\mu(x) = b_k \ (k \leq m_0), \ \mu \text{ measure}$$

Some instances:

• Minimizing a rational function f_0/f_1 (assuming $f_1 > 0$ on K)

$$\min_{x \in K} \frac{f_0(x)}{f_1(x)} = \min_{\mu} \int_K f_0(x) d\mu(x) \text{ s.t. } \int_K f_1(x) d\mu(x) = 1$$

• Polynomial cubature rules: The (GMP) problem

$$\int_{\mathcal{K}} x^{lpha} d\mu(x) = \int_{\mathcal{K}} x^{lpha} dx$$
 for all $|lpha| \leq d$

has a solution μ which is finite atomic with $N \leq \binom{n+d}{d}$ atoms

Duality for (GMP)

Primal (GMP):

$$\operatorname{val} := \inf_{\mu} \int_{\mathcal{K}} f_0 d\mu(x) \quad \text{s.t.} \quad \int_{\mathcal{K}} f_k(x) d\mu(x) = b_k \ (k \leq m_0)$$

Dual program:

$$\operatorname{val}^* = \sup_{y \in \mathbb{R}^{m_0}} \sum_{k=1}^{m_0} b_k y_k \text{ s.t. } f_0 - \sum_{k=1}^{m_0} y_k f_k \ge 0 \text{ on } K$$

Theorem: Assume (GMP) is feasible. Then, $\operatorname{val}^* \leq \operatorname{val}$, with **equality** if there exists $z \in \mathbb{R}^{m_0+1}$ s.t. $\sum_{k=0}^{m_0} z_k f_k > 0$ on K. Then, (GMP) has an optimal solution μ , which is finite atomic with at most m atoms.

Moment relaxations for (GMP)

Moment relaxation: for an integer $t \ge \max_k \lceil \deg(f_k)/2 \rceil$

$$\operatorname{val}_t = \inf L(f_0) \text{ s.t. } L(f_k) = b_k \ (k \leq m_0), \ L \geq 0 \text{ on } \mathcal{M}(\mathbf{g})_{2t}$$

Theorem: Assume the Archimedean condition holds for $\mathcal{M}(\mathbf{g})$ and there exists $z \in \mathbb{R}^{m_0+1}$ such that $\sum_{k=0}^{m_0} z_k f_k > 0$ on K. Then

 $\operatorname{val}^* = \sup_t \operatorname{val}_t = \operatorname{val}_t$

Proof: As val^{*} = val and sup_t val_t \leq val it suffices to show val^{*} \leq sup_t val_t. Let $\epsilon > 0$ and y feasible for val^{*}, i.e., $f_0 - \sum_{k=1}^{m_0} y_k f_k \geq 0$ on K. Then, $(\epsilon z_0 + 1)f_0 + \sum_{k=1}^{m_0} (\epsilon z_k - y_k)f_k > 0$ on K, and thus belongs to $\mathcal{M}(\mathbf{g})_{2t}$ for some t. Then, $(\epsilon z_0 + 1)L(f_0) + \sum_{k=1}^{m_0} (\epsilon z_k - y_k)b_k \geq 0 \quad \forall L$ feasible for val_t Hence, $b^{\mathsf{T}} y \leq \epsilon b^{\mathsf{T}} z + (\epsilon z_0 + 1)$ val_t \rightarrow val^{*} \leq sup_t val_t

Flatness and finite convergence

Theorem:

Let $t \geq d_K$, $\max_k \lceil \deg(f_k)/2 \rceil$.

Let y be an optimal solution to the relaxation val_t .

Assume that the flatness condition holds:

rank $M_s(y) = \operatorname{rank} M_{s-d_K}(y) =: r$ for some s s.t. $d_K \le s \le t$.

Then $\operatorname{val}_t = \operatorname{val}$ and (GMP) has an optimal solution μ which is finite atomic with *r* atoms.

For more on (GMP) see the monograph 'Moments, Positive Polynomials and Their Applications' of Lasserre (2009).

Some references

P. Parrilo: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, 2000

J.-B. Lasserre: Global optimization with polynomials and the problem of moments, *SIAM J. Optimization*, 2001

J.-B. Lasserre: Moments, Positive Polynomials and their Applications, Imperial College Press, 2009

M. Laurent: Sums of squares, moment matrices and optimization over polynomials, in IMA volume 149, 2009

M. Anjos and J.-B. Lasserre (eds): Handbook on Semidefinite, Conic and Polynomial Optimization, Springer 2012

G. Blekherman, P. Parrilo, R. Thomas (eds): Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optim., 2012.

J.B. Lasserre: Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University Press, 2015