Polynomial Optimization Sums of squares and moments

$$
\text { Part } 1
$$

Monique Laurent
POEMA 1st Workshop - Florence, January 2020

What is polynomial optimization?

Minimize a polynomial function f over a region

$$
K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

defined by polynomial inequalities
$\rightsquigarrow K$ is a basic closed semialgebraic set

Some hard instances

Testing nonnegative polynomials: $f \geq 0$ on K ?

The unconstrained quadratic case is easy:

- A symmetric matrix M is positive semidefinite $(M \succeq 0)$ if and only if $f_{M}=x^{\top} M x \geq 0$ on \mathbb{R}^{n}

Can test whether $M \succeq 0$ in polynomial time, using Gaussian elimination
The quartic case is hard:

- A symmetric matrix M is copositive if $f_{M}=x^{\top} M x \geq 0$ on \mathbb{R}_{+}^{n}

Equivalently, the polynomial $F_{M}=\sum_{i, j=1}^{n} M_{i j} x_{i}^{2} x_{j}^{2}$ is nonnegative over \mathbb{R}^{n}
Testing matrix copositivity is co-NP complete
[Kabadi-Murty 1987]

- A polynomial f is convex if and only if its Hessian matrix $H_{f}(x)=\left(\partial^{2} f(x) / \partial x_{i} \partial x_{j}\right)_{i, j=1}^{n}$ is positive semidefinite
Equivalently, the polynomial $y^{\top} H_{f}(x) y$ is nonnegative over $\mathbb{R}^{n} \times \mathbb{R}^{n}$
Testing convexity is NP-hard
[Ahmadi et al. 2013]

Some hard combinatorial problems over graphs

- stability number $\alpha(G)$:
 maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- clique number $\omega(G)$:
maximum cardinality of a set of pairwise adjacent nodes (clique)
- coloring number $\chi(G)$:
minimum number of colors needed to properly color the vertices of G

Computing $\alpha(G), \omega(G), \chi(G)$ is hard
NP-complete [Karp 1972]
Easy relations: $\quad \omega(G) \leq \chi(G)$ and $\quad \omega(G)=\alpha(\bar{G})$

Reducing coloring to the stability number

G is 3-colorable
$G \square K_{3}$ has a stable set of cardinality $|V(G)|$
$\chi(G)$ is the smallest integer c such that $\alpha\left(G \square K_{c}\right)=|V(G)|$

Polynomial optimization formulations for $\alpha(G)$

- Basic formulation:

$$
\alpha(G)=\max \sum_{v \in V} x_{v} \text { s.t. } x_{u} x_{v}=0(u v \in E), x_{v}^{2}=x_{v}(v \in V)
$$

- Motzkin-Straus formulation:

$$
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x \text { s.t. } \sum_{v \in V} x_{v}=1, x_{v} \geq 0(i \in V)
$$

- Copositive formulation:

$$
\alpha(G)=\min \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \text { is copositive }
$$

A first bound for $\alpha(G)$ and $\chi(G)$

The theta number [Lovász 1979] of a graph $G=(V=[n], E)$:

$$
\vartheta(G)=\max _{X \in \mathcal{S}^{n}}\langle J, X\rangle \text { s.t. } X_{u v}=0 \forall u v \in E, \operatorname{Tr}(X)=1, X \succeq 0
$$

\rightsquigarrow expressed via a semidefinite program
\rightsquigarrow can be computed in polynomial time (to arbitrary precision)
(Lovász sandwich) Theorem: $\alpha(G) \leq \vartheta(G) \leq \chi(\bar{G})$

How to get stronger bounds?

What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization over the cone of positive semidefinite matrices.

Input data: $b_{j} \in \mathbb{R}, c, a_{j} \in \mathbb{R}^{n}$, inner product $\langle c, x\rangle=c^{\top} x=\sum_{i=1}^{n} c_{i} x_{i}$
$C, A_{j} \in \mathcal{S}^{n}$, with trace inner product: $\langle C, X\rangle=\operatorname{Tr}\left(C^{\top} X\right)=\sum_{i, j=1}^{n} C_{i j} X_{i j}$

Geometrically

a spectrahedron

SDP duality

SDP (primal form):

(P)

$$
\begin{array}{cl}
p^{*}:=\sup _{X \in \mathcal{S}^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{j}, X\right\rangle=b_{j} \quad(j=1, \ldots, m), X \succeq 0
\end{array}
$$

SDP (dual form):

$$
\text { (D) } \begin{array}{ll}
d^{*}:=\inf _{y \in \mathbb{R}^{m}} & b^{\top} y \\
\text { s.t. } & \sum_{j=1}^{m} y_{j} A_{j}-C \succeq 0
\end{array}
$$

Theorem:

- Weak duality: $p^{*} \leq d^{*}$
- Strong duality: $p^{*}=d^{*}$ holds in any of the two cases:

1. (D) is bounded ($d^{*}>-\infty$) and strictly feasible ($\exists y$ with $\sum_{j=1}^{m} y_{j} A_{j}-C \succ 0$); then (P) has an optimal solution (sup is max)
2. (P) is bounded ($p^{*}<\infty$) and strictly feasible ($\exists X \succeq 0$ primal feasible); then (D) has an optimal solution (inf is min).

Example

Recall the SDP defining the theta number $\vartheta(G)$:

> Primal SDP:
(P) $\quad \max \langle J, X\rangle$ s.t. $\operatorname{Tr}(X)=1, X_{i j}=0(i j \in E(G)), X \succeq 0$

Dual SDP:

$$
\text { (D) } \min y \text { s.t. } y l+\sum_{i j \in E} z_{i j} E_{i j}-J \succeq 0
$$

Observations:

- both (P) and (D) are strictly feasible and bounded
- One can reformulate $\vartheta(G)$ as

$$
\begin{gathered}
\vartheta(G)=\min y \text { s.t. } y l+Z-J \succeq 0, Z_{i j}=0 \text { if } i=j \text { or } i j \in E(\bar{G}) \\
\vartheta(G)=\min y \text { s.t. } y l-B \succeq 0, B_{i j}=1 \text { if } i=j \text { or } i j \in E(\bar{G}) \\
\vartheta(G)=\min \lambda_{\max }(B) \text { s.t. } B_{i j}=1 \text { if } i=j \text { or } i j \in E(\bar{G})
\end{gathered}
$$

Algorithms for LP vs. SDP

1940's: Dantzig simplex algorithm for LP.
Works well in practice, but is it efficient (= poly-time)?
1980's: efficient algorithms for LP and SDP:
Khachiyan: ellipsoid method (not practical)
Karmarkar, Nemirovski-Nesterov: interior-point algorithms (practical)

LP is widely used, also in industrial applications.
SDP has a greater modeling power:

- combinatorial optimization
- sums of squares of polynomials
- quantum information
- many more ...

Testing sums of squares of polynomials with SDP

\[

\]

Gram-matrix method [Powers-Wörmann 1998]

Example

$$
f(x, y)=x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+2 y^{4} \text { is SOS? }
$$

$$
f(x, y)=\left(\begin{array}{lll}
x^{2} & x y & y^{2}
\end{array}\right) \underbrace{\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)}_{x \succeq 0 ?}\left(\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right)
$$

Equate coefficients on both sides:

$x^{4}: a=1 \quad x^{3} y: 2 b=2 \quad x^{2} y^{2}: 2 c+d=3 \quad x y^{3}: 2 e=2 \quad y^{4}: f=2$

$$
\begin{aligned}
& X=\left(\begin{array}{ccc}
1 & 1 & c \\
1 & 3-2 c & 1 \\
c & 1 & 2
\end{array}\right) \succeq 0 \Longleftrightarrow-1 \leq c \leq 1 \\
& c=-1 \rightsquigarrow f=\left(x^{2}+x y-y^{2}\right)^{2}+\left(y^{2}+2 x y\right)^{2} \\
& c=0 \rightsquigarrow f=\left(x^{2}+x y\right)^{2}+\frac{3}{2}\left(x y+y^{2}\right)^{2}+\frac{1}{2}\left(x y-y^{2}\right)^{2}
\end{aligned}
$$

General approach to polynomial optimization

Strategy

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000-)

Such relaxations can be constructed using representations of nonnegative polynomials as sums of squares and
the dual theory of moments

Sums of squares approach

Strategy (use sums of squares)

Testing whether a polynomial f is nonnegative is hard
but one can test the sufficient condition:
f is a sum of squares of polynomials (SOS)
using semidefinite programming

Are all nonnegative polynomials SOS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials if and only if $n=1$, or $d=2$, or ($n=2$ and $d=4$).

Hilbert's 17th problem [1900]: Is every nonnegative polynomial a sum of squares of rational functions?

Artin [1927]: Yes

Motzkin [1967]:
$p=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}$ is nonnegative on \mathbb{R}^{2},
not a sum of squares, but
$\left(x^{2}+y^{2}\right)^{2} p$ is SOS!

Another example

Horn matrix:

$$
M=\left(\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right) \rightsquigarrow F_{M}=\sum_{i, j=1}^{5} M_{i j} x_{i}^{2} x_{j}^{2}
$$

- M is copositive, i.e., F_{M} is nonnegative
- F_{M} is not a sum of squares (M is not psd)
- $\left(\sum_{i=1}^{5} x_{i}^{2}\right) F_{M}$ is a sum of squares

$$
\begin{aligned}
\left(\sum_{i=1}^{5} x_{i}^{2}\right) f_{M}= & x_{1}^{2}\left(x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{5}^{2}\right)^{2} \\
& +x_{2}^{2}\left(x_{2}^{2}-x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-x_{1}^{2}\right)^{2} \\
& +x_{3}^{2}\left(x_{3}^{2}-x_{4}^{2}+x_{5}^{2}+x_{1}^{2}-x_{2}^{2}\right)^{2} \\
& +x_{4}^{2}\left(x_{4}^{2}-x_{5}^{2}+x_{1}^{2}+x_{2}^{2}-x_{3}^{2}\right)^{2} \\
& +x_{5}^{2}\left(x_{5}^{2}-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right)^{2} \\
& +4\left(x_{1}^{2} x_{2}^{2} x_{4}^{2}+x_{2}^{2} x_{3}^{2} x_{5}^{2}+x_{3}^{2} x_{4}^{2} x_{1}^{2}+x_{4}^{2} x_{5}^{2} x_{2}^{2}+x_{5}^{2} x_{1}^{2} x_{3}^{2}\right)
\end{aligned}
$$

[Parrilo 2000]

Many sums of squares ?

Theorem: [Blekherman 2003]
Few SOS polynomials
when fixing the degree and letting the number of variables grow:

$$
\begin{gathered}
\frac{\operatorname{vol}\left(\mathrm{POS}_{n, 2 d}\right)}{\operatorname{vol}\left(S O S_{n, 2 d}\right)}=\Theta\left(n^{\frac{d-1}{2} D}\right) \quad\left[D=\binom{n+2 d-1}{2 d}-1\right]
\end{gathered}
$$

Theorem: [Lasserre 2006] [Lasserre-Netzer 2006]
SOS polynomials are dense within nonnegative polynomials, when fixing the number of variables and letting the degree grow:

$$
\begin{gathered}
\text { If } f \geq 0 \text { on }[-1,1]^{n} \text {, then } \\
\forall \epsilon>0 \quad \exists k \in \mathbb{N} \text { such that } f+\epsilon\left(1+\sum_{i=1}^{n} x_{i}^{2 k}\right) \quad \text { is SOS }
\end{gathered}
$$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad \mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}
$$

Quadratic module: $\mathcal{M}(\mathbf{g})=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j}\right.$ SOS $\}$
Preordering: $\mathcal{P}(\mathbf{g})=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} g_{1}^{e_{1}} \cdots g_{m}^{e_{m}} \mid s_{e}\right.$ SOS $\} \supseteq \mathcal{M}(g)$

Theorem: Assume K is compact.

1. [Schmüdgen'91] $f>0$ on $K \Longrightarrow f \in \mathcal{P}(\mathbf{g}) \Longrightarrow f \geq 0$ on K
2. [Putinar'93] Archimedean cond.: $R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in \mathcal{M}(\mathbf{g})$ for some $R>0$. $f>0$ on $K \Longrightarrow f \in \mathcal{M}(\mathbf{g}) \Longrightarrow f \geq 0$ on K

Positivstellensatz for general K [Krivine 1964, Stengle 1974]

$$
\begin{gathered}
f>0 \text { on } K \Longleftrightarrow \exists p, q \in \mathcal{P}(\mathbf{g}) \quad p f=q+1 \\
f \geq 0 \text { on } K \Longleftrightarrow \exists p, q \in \mathcal{P}(\mathbf{g}) \exists k \in \mathbb{N} \quad p f=f^{2 k}+q
\end{gathered}
$$

SOS relaxations for (P)

Truncated quadratic module:

$$
\begin{gathered}
\mathcal{M}(g)_{2 t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SOS }\} \\
\text { Replace }
\end{gathered}
$$

(P) $\quad f_{\text {min }}=\inf _{x \in K} f(x)=\sup \lambda$ s.t. $f-\lambda \geq 0$ on K

by

(SOSt) $\quad f_{\text {sos }, t}=\sup \lambda$ s.t. $f-\lambda \in \mathcal{M}(g)_{2 t}$

- $f_{\text {sos }, t} \leq f_{\text {sos }, t+1} \leq f_{\text {min }}, \quad f_{\text {sos }, t}$ can be computed with SDP
- If K compact (+ Archimedean), then asymptotic convergence: $\lim _{t \rightarrow \infty} f_{\mathrm{sos}, t}=f_{\text {min }}$
[Lasserre 2001]

Moment approach

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

μ is a representing measure of L on K if

$$
L(p)=\int_{K} p(x) d \mu(x) \text { for all } p \in \mathbb{R}[x]
$$

Deciding if a linear functional $L \in \mathbb{R}[x]^{*}$ has a representing measure μ on K is the (difficult, classical) moment problem

But one can use the (easier) necessary condition:
L is nonnegative on the quadratic module $\mathcal{M}(g)=\left\{s_{0}+\sum_{j} s_{j} g_{j}: s_{j} \mathrm{SOS}\right\}:$

$$
L\left(p^{2}\right) \geq 0, \quad L\left(p^{2} g_{j}\right) \geq 0 \text { for all } p \in \mathbb{R}[x] \text { and } j \in[m]
$$

Moment matrices

$L \in \mathbb{R}[x]^{*}$ is determined by its values on the monomial base:

$$
\begin{aligned}
& L: \mathbb{R}[x] \\
& \rightarrow \mathbb{R} \\
& x^{\alpha} \mapsto L\left(x^{\alpha}\right)=: y_{\alpha} \\
& f=\sum_{\alpha} f_{\alpha} x^{\alpha} \mapsto L(f)=\sum_{\alpha} f_{\alpha} y_{\alpha}=\bar{f}^{\top} y
\end{aligned}
$$

Moment matrix: $M(y):=\left(L\left(x^{\alpha} x^{\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}}=\left(y_{\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}^{n}}$
Localizing moment matrix: $M(g y)=\left(L\left(g(x) x^{\alpha} x^{\beta}\right)\right)_{\alpha, \beta}=\left(\sum_{\gamma} g_{\gamma} y_{\alpha+\beta+\gamma}\right)_{\alpha, \beta}$
L is nonnegative on the quadratic module $\mathcal{M}(g)=\left\{s_{0}+\sum_{j} s_{j} g_{j}: s_{j}\right.$ SOS $\}$:

$$
L\left(p^{2}\right) \geq 0 \quad \forall p \quad \Longleftrightarrow \quad M(y) \succeq 0
$$

$$
\text { and, for all } j, \quad L\left(g_{j} p^{2}\right) \geq 0 \quad \forall p \quad \Longleftrightarrow \quad M\left(g_{j} y\right) \succeq 0
$$

Key facts: $\quad L\left(p^{2}\right)=\bar{p}^{\top} M(y) \bar{p}, \quad L\left(g p^{2}\right)=\bar{p}^{\top} M(g y) \bar{p}$

Examples

- For $n=1, M_{t}(y)$ is a Hankel matrix:

$$
\left(\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
x & x^{2} & x^{3} & x^{4} \\
x^{2} & x^{3} & x^{4} & x^{5} \\
x^{3} & x^{4} & x^{5} & x^{6}
\end{array}\right) \rightsquigarrow M_{3}(y)=\left(\begin{array}{llll}
y_{0} & y_{1} & y_{2} & y_{3} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{2} & y_{3} & y_{4} & y_{5} \\
y_{3} & y_{4} & y_{5} & y_{6}
\end{array}\right)
$$

- For $n=2, M_{t}(y)$ is of Hankel type:

$$
M_{2}(y)=\begin{aligned}
& \\
& 1 \\
& x_{1} \\
& x_{2} \\
& x_{1}^{2} \\
& x_{1} x_{2} \\
& x_{2}^{2}
\end{aligned}\left(\begin{array}{cccccc}
1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} \\
y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{31} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{30} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right)
$$

Moment relaxations for (P)

(P) $\quad f_{\text {min }}=\inf _{L \in \mathbb{R}[x]]^{*}} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree 2t: (MOMt)

$$
\begin{gathered}
f_{\text {mom }, t}=\inf _{L \in \mathbb{R}[x]_{2 t}^{* t}} L(f) \text { s.t. } L \geq 0 \text { on } \mathcal{M}(g)_{2 t} \\
=\inf _{y=\left(y_{\alpha}\right)|\alpha| \leq 2 t} \bar{f}^{\top} y \quad \text { s.t. } \quad M_{t}(y) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} y\right) \succeq 0 \quad \forall j \in[m]
\end{gathered}
$$

(SOSt) $f_{\text {sos }, t}=\sup \lambda$ s.t. $f-\lambda \in \mathcal{M}(g)_{2 t} \rightsquigarrow$ dual SDP

$$
f_{\mathrm{sos}, t} \leq f_{\mathrm{mom}, t} \leq f_{\min }
$$

Asymptotic convergence if K is compact [+ Archimedean condition]

Optimality criterion for moment relaxation (MOMt)

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

$$
d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil
$$

Theorem [CF 1996,2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]
Assume y is an optimal solution of (MOMt) such that $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-d_{K}}(y)$ for some $d_{K} \leq s \leq t$

- Then the relaxation is exact: $f_{\text {mom }, t}=f_{\text {min }}$
- Moreover, one can compute the global minimizers:
$V_{\mathbb{C}}\left(\operatorname{Ker} M_{s}(y)\right) \subseteq\{$ global minimizers of f on $K\}$, with equality if $\operatorname{rank} M_{t}(y)$ is maximum (rank $=\#$ minimizers)

Remarks

- Many interior point algs for SDP give a max rank optimal solution
- Algorithm for computing the (finitely many) real roots of polynomial equations (and real radical ideals)
[Lasserre-L-Rostalski 2008,2009]
- Finite convergence holds generically
[Nie 2013]
- Finite convergence in the convex case
[Lasserre 2009, de Klerk-L 2011]
- Several implementations: GloptiPoly [Henrion-Lasserre], SOSTOOLS [Prajna et al.], SparsePOP [Waki et al.], YALMIP [Löfberg]

Exploiting sparsity structure

For $I \subseteq[n] x_{I}:=\left(x_{i}\right)_{i \in I}$ denotes the group of variables indexed by I.
Consider sets $I_{1}, \ldots, I_{L} \subseteq[n]$ for which the polynomials p, g_{j} satisfy:

1. $p=p_{1}+\ldots+p_{L}$, where each $p_{\ell} \in \mathbb{R}\left[x_{I_{\ell}}\right]$
2. Each g_{j} belongs to some $\mathbb{R}\left[x_{I_{\ell}}\right]$

Define the (weaker) bound: $\widehat{p_{t}^{\text {sos }}}=\sup \lambda$ s.t. $p-\lambda=s+\sum_{j=1}^{m} s_{j} g_{j}$, where $s=\sum_{\ell=1}^{L} s_{\ell}$ with $s_{\ell} \in \Sigma\left[x_{l_{\ell}}\right]_{2 t}$, and $s_{j} \in \Sigma\left[x_{l_{\ell}}\right]$ if $g_{j} \in \mathbb{R}\left[x_{\ell}\right]$

Then, $\widehat{p_{t}^{\text {sos }}} \leq p_{t}^{\text {sos }} \leq p_{\text {min }} \quad$ but $\widehat{p_{t}^{\text {sos }}}$ involves smaller psd matrices!
Theorem: [Lasserre 2006, Grimm-Netzer-Schweighofer 2007] Assume the sets I_{1}, \ldots, I_{L} satisfy the running intersection property (up to reordering):

$$
\forall k \geq 2 \exists k_{0} \leq k-1 \text { s.t. } I_{k} \cap\left(I_{1} \cup \ldots \cup I_{k-1}\right) \subseteq I_{k_{0}}
$$

and, for each $I \leq L$, the polynomials g_{j} using variables in $I_{\text {/ }}$ generate an Archimedean quadratic module.
Then $\lim _{t \rightarrow \infty} \widehat{p_{t}^{\text {sos }}}=p_{\text {min }}$.

Example

- The polynomial
$p(x)=$
$\sum_{i=1}^{n-3}\left(x_{i}+10 x_{i+1}\right)^{2}+5\left(x_{i+2}-x_{i+3}\right)^{2}+\left(x_{i+1}-2 x_{i+2}\right)^{4}+10\left(x_{i}-10 x_{i+3}\right)^{4}$
has sparsity structure satisfying (RIP) for the sets
$I_{\ell}=\{\ell, \ell+1, \ell+2, \ell+3\}$ for $\ell=1, \ldots, n-3$
- The polynomial

$$
p(x)=\sum_{i=2}^{n}\left(a_{i} x_{1}+b_{i} x_{i}\right)^{4}
$$

has sparsity structure satisfying (RIP) for the sets
$I_{\ell}=\left\{x_{1}, x_{\ell}\right\}$ for $\ell=2, \ldots, n$

Exploiting equations:

binary polynomial optimization

Back to the stability number $\alpha(G)$

$$
\alpha(G)=\max p(x):=\sum_{i=1}^{n} x_{i} \text { s.t. } x_{i} x_{j}=0(i j \in E), x_{i}^{2}=x_{i}(i \in[n])
$$

Define the ideal \mathcal{I}^{G} (and its truncations \mathcal{I}_{t}^{G}):

$$
\mathcal{I}^{G}=\left(\left\{x_{i} x_{j}: i j \in E\right\} \cup\left\{x_{i}^{2}-x_{i}: i \in[n)\right\}\right)
$$

Moment bound of order t :

$$
\begin{aligned}
\operatorname{las}_{t}(G) & :=\max _{L \in\left(\mathbb{R}[x]_{2 t}\right)^{*}} L(p) \text { s.t. } L(1)=1, L \geq 0 \text { on } \Sigma_{2 t}, L=0 \text { on } \mathcal{I}_{2 t}^{G} \\
& =\max \sum_{i=1}^{n} y_{i} \text { s.t. } y_{0}=1, M_{t}(y) \succeq 0, L_{y}=0 \text { on } \mathcal{I}_{2 t}^{G}
\end{aligned}
$$

Lemma: Assume y is feasible for the moment bound of order t.

1. y_{α} depends only on the support $I=\left\{i \in[n]: \alpha_{i} \geq 1\right\}$ of α \rightsquigarrow rename y_{α} as z_{l}.
2. $M_{t}(y)$ is a flat extension of $M_{n}(y)$ if $t \geq n+1$
3. $M_{t}(y)$ is a flat extension of $M_{t}^{01}(z):=\left(z_{I \cup J J}\right)_{|I|,|J| \leq t}$.

More economical reformulation of the moment bound $\operatorname{las}_{t}(G)$:

$$
\max \sum_{i=1}^{n} z_{i} \text { s.t. } z_{\emptyset}=1, M_{t}^{01}(z) \succeq 0, z_{l}=0 \text { if } I \text { contains an edge }
$$

Facts:

1. The bound of order 1 is the theta number: $\operatorname{las}_{1}(G)=\vartheta(G)$
2. The bound of order $t=\alpha(G)$ is exact:

$$
\operatorname{las}_{t}(G)=\alpha(G) \text { if } t \geq \alpha(G) .
$$

3. Such more economical reformulation extends to any polynomial optimization problem over $\{0,1\}^{n}$ (or $\{ \pm 1\}^{n}$)

Observation: This extends to $K \subseteq V_{\mathbb{C}}(I)$, where $V_{\mathbb{C}}(I)$ is finite. Then, finite convergence holds and one gets a SDP reformulation for $p_{\min }$ using matrices of size $N=\operatorname{dim} \mathbb{R}[x] / I$

Key idea: Work in the quotient space $\mathbb{R}[x] / /$ instead of $\mathbb{R}[x]$.

Extension to the general

 moment problem (GMP)
The general moment problem (GMP)

$$
\text { val }:=\inf _{\mu} \int_{K} f_{0} d \mu(x) \text { s.t. } \int_{K} f_{k}(x) d \mu(x)=b_{k}\left(k \leq m_{0}\right), \mu \text { measure }
$$

Some instances:

- Minimizing a rational function f_{0} / f_{1}

$$
\min _{x \in K} \frac{f_{0}(x)}{f_{1}(x)}=\min _{\mu} \int_{K} f_{0}(x) d \mu(x) \text { s.t. } \int_{K} f_{1}(x) d \mu(x)=1
$$

- Polynomial cubature rules: The (GMP) problem

$$
\int_{K} x^{\alpha} d \mu(x)=\int_{K} x^{\alpha} d x \quad \text { for all }|\alpha| \leq d
$$

has a solution μ which is finite atomic with $N \leq\binom{ n+d}{d}$ atoms
\rightsquigarrow cubature rule with N points, exact for integrating degree $\leq d$ polynomials on K
[Tchakaloff'57]

Duality for (GMP)

Primal (GMP):

$$
\text { val }:=\inf _{\mu} \int_{K} f_{0} d \mu(x) \text { s.t. } \int_{K} f_{k}(x) d \mu(x)=b_{k}\left(k \leq m_{0}\right)
$$

Dual program:

$$
\operatorname{val}^{*}=\sup _{y \in \mathbb{R}^{m_{0}}} \sum_{k=1}^{m_{0}} b_{k} y_{k} \text { s.t. } f_{0}-\sum_{k=1}^{m_{0}} y_{k} f_{k} \geq 0 \text { on } K
$$

Theorem: Assume (GMP) is feasible. Then, val ${ }^{*} \leq$ val, with equality if there exists $z \in \mathbb{R}^{m_{0}+1}$ s.t. $\sum_{k=0}^{m_{0}} z_{k} f_{k}>0$ on K. Then, (GMP) has an optimal solution μ, which is finite atomic with at most m atoms.

Moment relaxations for (GMP)

Moment relaxation: for an integer $t \geq \max _{k}\left\lceil\operatorname{deg}\left(f_{k}\right) / 2\right\rceil$

$$
\operatorname{val}_{t}=\inf L\left(f_{0}\right) \text { s.t. } L\left(f_{k}\right)=b_{k}\left(k \leq m_{0}\right), L \geq 0 \text { on } \mathcal{M}(\mathbf{g})_{2 t}
$$

Theorem: Assume the Archimedean condition holds for $\mathcal{M}(\mathbf{g})$ and there exists $z \in \mathbb{R}^{m_{0}+1}$ such that $\sum_{k=0}^{m_{0}} z_{k} f_{k}>0$ on K. Then

$$
\operatorname{val}^{*}=\sup _{t} \operatorname{val}_{t}=\text { val. }
$$

Proof: As val ${ }^{*}=$ val \quad and $\quad \sup _{t}$ val $_{t} \leq$ val it suffices to show val $^{*} \leq \sup _{t}$ val $_{t}$.
Let $\epsilon>0$ and y feasible for val ${ }^{*}$, i.e., $f_{0}-\sum_{k=1}^{m_{0}} y_{k} f_{k} \geq 0$ on K.
Then, $\left(\epsilon z_{0}+1\right) f_{0}+\sum_{k=1}^{m_{0}}\left(\epsilon z_{k}-y_{k}\right) f_{k}>0$ on K, and thus belongs to $\mathcal{M}(\mathbf{g})_{2 t}$ for some t.
Then, $\left(\epsilon z_{0}+1\right) L\left(f_{0}\right)+\sum_{k=1}^{m_{0}}\left(\epsilon z_{k}-y_{k}\right) b_{k} \geq 0 \quad \forall \mathrm{~L}$ feasible for val_{t} Hence, $b^{\top} y \leq \epsilon b^{\top} z+\left(\epsilon z_{0}+1\right)$ val $_{t} \quad \rightsquigarrow \operatorname{val}^{*} \leq \sup _{t} \operatorname{val}_{t}$

Flatness and finite convergence

Theorem:

Let $t \geq d_{k}, \max _{k}\left\lceil\operatorname{deg}\left(f_{k}\right) / 2\right\rceil$.
Let y be an optimal solution to the relaxation val $_{t}$. Assume that the flatness condition holds:

$$
\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-d_{K}}(y)=: r \quad \text { for some } s \text { s.t. } d_{K} \leq s \leq t .
$$

Then $\operatorname{val}_{t}=$ val and (GMP) has an optimal solution μ which is finite atomic with r atoms.

For more on (GMP) see the monograph 'Moments, Positive Polynomials and Their Applications' of Lasserre (2009).

Some references

P. Parrilo: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, 2000
J.-B. Lasserre: Global optimization with polynomials and the problem of moments, SIAM J. Optimization, 2001
J.-B. Lasserre: Moments, Positive Polynomials and their Applications, Imperial College Press, 2009
M. Laurent: Sums of squares, moment matrices and optimization over polynomials, in IMA volume 149, 2009
M. Anjos and J.-B. Lasserre (eds): Handbook on Semidefinite, Conic and Polynomial Optimization, Springer 2012
G. Blekherman, P. Parrilo, R. Thomas (eds): Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optim., 2012.
J.B. Lasserre: Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University Press, 2015

