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What is polynomial optimization?
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(P)

Minimize a polynomial function f over a region

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

defined by polynomial inequalities

 K is a basic closed semialgebraic set



Some hard instances



Testing nonnegative polynomials: f ≥ 0 on K?

The unconstrained quadratic case is easy:

• A symmetric matrix M is positive semidefinite (M � 0) if and only if

fM = xTMx ≥ 0 on Rn

Can test whether M � 0 in polynomial time, using Gaussian elimination

The quartic case is hard:

• A symmetric matrix M is copositive if fM = xTMx ≥ 0 on Rn
+

Equivalently, the polynomial FM =
∑n

i,j=1 Mijx
2
i x

2
j is nonnegative over Rn

Testing matrix copositivity is co-NP complete [Kabadi-Murty 1987]

• A polynomial f is convex if and only if its Hessian matrix

Hf (x) = (∂2f (x)/∂xi∂xj)
n
i,j=1 is positive semidefinite

Equivalently, the polynomial yTHf (x)y is nonnegative over Rn × Rn

Testing convexity is NP-hard [Ahmadi et al. 2013]



Some hard combinatorial problems over graphs

α = 4, ω = 2, χ = 3

• stability number α(G ):

maximum cardinality of a set of pairwise
non-adjacent vertices (stable set)

• clique number ω(G ):

maximum cardinality of a set of pairwise
adjacent nodes (clique)

• coloring number χ(G ):

minimum number of colors needed to
properly color the vertices of G

Computing α(G ), ω(G ), χ(G ) is hard NP-complete [Karp 1972]

Easy relations: ω(G ) ≤ χ(G ) and ω(G ) = α(G )



Reducing coloring to the stability number

G is 3-colorable
G�K3 has a stable set of cardinality |V (G )|

χ(G ) is the smallest integer c such that α(G�Kc) = |V (G )|



Polynomial optimization formulations for α(G )

• Basic formulation:

α(G ) = max
∑
v∈V

xv s.t. xuxv = 0 (uv ∈ E ), x2v = xv (v ∈ V )

• Motzkin-Straus formulation:

1

α(G )
= min xT (I + AG )x s.t.

∑
v∈V

xv = 1, xv ≥ 0 (i ∈ V )

• Copositive formulation:

α(G ) = min λ s.t. λ(I + AG )− J is copositive



A first bound for α(G ) and χ(G )

The theta number [Lovász 1979] of a graph G = (V = [n],E ):

ϑ(G ) = max
X∈Sn

〈J,X 〉 s.t. Xuv = 0 ∀uv ∈ E , Tr(X ) = 1, X � 0

 expressed via a semidefinite program

 can be computed in polynomial time (to arbitrary precision)

(Lovász sandwich) Theorem: α(G ) ≤ ϑ(G ) ≤ χ(G )

How to get stronger bounds?



What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization
over the cone of positive semidefinite matrices.

LP SDP
vector variable x ∈ Rn  symmetric matrix variable X ∈ Sn

x ≥ 0 X � 0 [positive semidefinite]

LP
maxx 〈c , x〉
s.t. 〈aj , x〉 = bj (j = 1, . . . ,m)

x ≥ 0

SDP
supX 〈C ,X 〉
s.t. 〈Aj ,X 〉 = bj (j = 1, . . . ,m)

X � 0

Input data: bj ∈ R, c , aj ∈ Rn, inner product 〈c , x〉 = cTx =
∑n

i=1 cixi

C ,Aj ∈ Sn, with trace inner product: 〈C ,X 〉 = Tr(CTX ) =
∑n

i,j=1 CijXij



Geometrically

LP SDP

Optimization over a polyhedron a spectrahedron



SDP duality

SDP (primal form):

(P)
p∗ := supX∈Sn 〈C ,X 〉

s.t. 〈Aj ,X 〉 = bj (j = 1, . . . ,m), X � 0

SDP (dual form):

(D)
d∗ := infy∈Rm bTy

s.t.
∑m

j=1 yjAj − C � 0

Theorem:

• Weak duality: p∗ ≤ d∗

• Strong duality: p∗ = d∗ holds in any of the two cases:

1. (D) is bounded (d∗ > −∞) and strictly feasible (∃y with∑m
j=1 yjAj − C � 0); then (P) has an optimal solution (sup is max)

2. (P) is bounded (p∗ <∞) and strictly feasible (∃X � 0 primal
feasible); then (D) has an optimal solution (inf is min).



Example

Recall the SDP defining the theta number ϑ(G ):

Primal SDP:

(P) max 〈J,X 〉 s.t. Tr(X ) = 1, Xij = 0 (ij ∈ E (G )), X � 0

Dual SDP:

(D) min y s.t. yI +
∑

ij∈E zijEij − J � 0

Observations:
• both (P) and (D) are strictly feasible and bounded

• One can reformulate ϑ(G ) as

ϑ(G ) = min y s.t. yI + Z − J � 0, Zij = 0 if i = j or ij ∈ E (G )

ϑ(G ) = min y s.t. yI − B � 0, Bij = 1 if i = j or ij ∈ E (G )

ϑ(G ) = min λmax(B) s.t. Bij = 1 if i = j or ij ∈ E (G )



Algorithms for LP vs. SDP

1940’s: Dantzig simplex algorithm for LP.

Works well in practice, but is it efficient (= poly-time)?

1980’s: efficient algorithms for LP and SDP:

Khachiyan: ellipsoid method (not practical)

Karmarkar, Nemirovski-Nesterov: interior-point algorithms (practical)

LP is widely used, also in industrial applications.

SDP has a greater modeling power:

I combinatorial optimization [approximation algorithms]

I sums of squares of polynomials [real algebraic geometry]

I quantum information

I many more ...



Testing sums of squares of polynomials with SDP

f (x) =
∑
|α|≤2d

fαx
α is a sum of squares of polynomials

m
f (x) =

∑
i pi (x)2 [ write pi (x) = pi

T [x ]d ]

m

f (x) =
∑
i

[x ]Td pi pi
T [x ]d = [x ]Td

(∑
i

pi pi
T

︸ ︷︷ ︸
X�0

)
[x ]d

m

The SDP:


∑

β,γ|β+γ=α

Xβ,γ = fα (|α| ≤ 2d)

X � 0

is feasible

Gram-matrix method [Powers-Wörmann 1998]



Example

f (x , y) = x4 + 2x3y + 3x2y2 + 2xy3 + 2y4 is SOS?

f (x , y) = (x2 xy y2)

a b c
b d e
c e f


︸ ︷︷ ︸

X�0?

x2

xy
y2



Equate coefficients on both sides:

x4: a = 1 x3y : 2b = 2 x2y2: 2c + d = 3 xy3: 2e = 2 y4: f = 2

X =

1 1 c
1 3− 2c 1
c 1 2

 � 0 ⇐⇒ −1 ≤ c ≤ 1

c = −1  f = (x2 + xy − y2)2 + (y2 + 2xy)2

c = 0  f = (x2 + xy)2 + 3
2 (xy + y2)2 + 1

2 (xy − y2)2



General approach to polynomial
optimization



Strategy

(P) fmin = min
x∈K

f (x)

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000–)

Such relaxations can be constructed using

representations of nonnegative polynomials as sums of squares

and

the dual theory of moments



Sums of squares approach



Strategy (use sums of squares)

(P)
fmin = min

x∈K
f (x) = sup

λ∈R
λ s.t. f (x)− λ ≥ 0 ∀x ∈ K

Testing whether a polynomial f is nonnegative is hard

but one can test the sufficient condition:

f is a sum of squares of polynomials (SOS)

using semidefinite programming



Are all nonnegative polynomials SOS?

Hilbert [1888]: Every nonnegative polynomial
in n variables and even degree d is a sum of
squares of polynomials if and only if
n = 1, or d = 2, or (n = 2 and d = 4).

Hilbert’s 17th problem [1900]: Is every nonneg-
ative polynomial a sum of squares of rational
functions?

Artin [1927]: Yes
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Motzkin [1967]:

p = x4y2+x2y4+1−3x2y2

is nonnegative on R2,

not a sum of squares, but

(x2 + y2)2p is SOS!



Another example

Horn matrix:

M =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

  FM =
5∑

i,j=1

Mijx
2
i x

2
j

I M is copositive, i.e., FM is nonnegative

I FM is not a sum of squares (M is not psd)

I (
∑5

i=1 x
2
i )FM is a sum of squares

(
∑5

i=1 x
2
i )fM = x21 (x21 − x22 + x23 + x24 − x25 )2

+x22 (x22 − x23 + x24 + x25 − x21 )2

+x23 (x23 − x24 + x25 + x21 − x22 )2

+x24 (x24 − x25 + x21 + x22 − x23 )2

+x25 (x25 − x21 + x22 + x23 − x24 )2

+4(x21 x
2
2 x

2
4 + x22 x

2
3 x

2
5 + x23 x

2
4 x

2
1 + x24 x

2
5 x

2
2 + x25 x

2
1 x

2
3 )

[Parrilo 2000]



Many sums of squares ?

Theorem: [Blekherman 2003]

Few SOS polynomials

when fixing the degree and letting the number of variables grow:

vol(POSn,2d )
vol(SOSn,2d )

= Θ(n
d−1
2 D) [D =

(
n+2d−1

2d

)
− 1]

Theorem: [Lasserre 2006] [Lasserre-Netzer 2006]

SOS polynomials are dense within nonnegative polynomials,

when fixing the number of variables and letting the degree grow:

If f ≥ 0 on [−1, 1]n, then

∀ε > 0 ∃k ∈ N such that f + ε
(
1 +

∑n
i=1 x

2k
i

)
is SOS



Positivity certificates over K

K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} g = {g1, . . . , gm}

Quadratic module: M(g) = {s0 + s1g1 + . . .+ smgm | sj SOS}

Preordering: P(g) = {
∑

e∈{0,1}m seg
e1
1 · · · g em

m | se SOS} ⊇ M(g)

Theorem: Assume K is compact.
1. [Schmüdgen’91] f > 0 on K =⇒ f ∈ P(g) =⇒ f ≥ 0 on K

2. [Putinar’93] Archimedean cond.: R2 −
∑n

i=1 x
2
i ∈M(g) for some R > 0.

f > 0 on K =⇒ f ∈M(g) =⇒ f ≥ 0 on K

Positivstellensatz for general K [Krivine 1964, Stengle 1974]

f > 0 on K ⇐⇒ ∃p, q ∈ P(g) pf = q + 1

f ≥ 0 on K ⇐⇒ ∃p, q ∈ P(g) ∃k ∈ N pf = f 2k + q



SOS relaxations for (P)

Truncated quadratic module:

M(g)2t := { s0︸︷︷︸
deg≤2t

+ s1g1︸︷︷︸
deg≤2t

+ . . .+ smgm︸ ︷︷ ︸
deg≤2t

| sj SOS}

Replace

(P) fmin = infx∈K f (x) = sup λ s.t. f − λ ≥ 0 on K

by

(SOSt) fsos,t = sup λ s.t. f − λ ∈M(g)2t

I fsos,t ≤ fsos,t+1 ≤ fmin, fsos,t can be computed with SDP

I If K compact (+ Archimedean), then asymptotic convergence:
limt→∞ fsos,t = fmin [Lasserre 2001]



Moment approach



fmin = inf
x∈K

f (x) = inf
µ

∫
K

f (x)dµ s.t. µ is a probability measure on K

= inf
L∈R[x]∗

L(f ) s.t. L has a representing measure µ on K

µ is a representing measure of L on K if

L(p) =
∫
K
p(x)dµ(x) for all p ∈ R[x ]

Deciding if a linear functional L ∈ R[x ]∗ has a representing measure µ on K

is the (difficult, classical) moment problem

But one can use the (easier) necessary condition:

L is nonnegative on the quadratic module M(g) = {s0 +
∑

j sjgj : sj SOS}:

L(p2) ≥ 0, L(p2gj) ≥ 0 for all p ∈ R[x ] and j ∈ [m]



Moment matrices

L ∈ R[x ]∗ is determined by its values on the monomial base:

L : R[x ] → R
xα 7→ L(xα) =: yα

f =
∑
α fαx

α 7→ L(f ) =
∑
α fαyα = f

T
y

Moment matrix: M(y) := (L(xαxβ))α,β∈Nn = (yα+β)α,β∈Nn

Localizing moment matrix: M(gy) = (L(g(x)xαxβ))α,β = (
∑
γ gγyα+β+γ)α,β

L is nonnegative on the quadratic module M(g) = {s0 +
∑

j sjgj : sj SOS}:

L(p2) ≥ 0 ∀p ⇐⇒ M(y) � 0

and, for all j , L(gjp
2) ≥ 0 ∀p ⇐⇒ M(gjy) � 0

Key facts: L(p2) = pTM(y)p, L(gp2) = pTM(gy)p



Examples

I For n = 1, Mt(y) is a Hankel matrix:
1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

  M3(y) =


y0 y1 y2 y3
y1 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6


I For n = 2, Mt(y) is of Hankel type:

M2(y) =



1 x1 x2 x21 x1x2 x22
1 y00 y10 y01 y20 y11 y02
x1 y10 y20 y11 y30 y21 y12
x2 y01 y11 y02 y21 y12 y03
x21 y20 y31 y21 y40 y31 y22
x1x2 y11 y21 y12 y30 y22 y13
x22 y02 y12 y03 y22 y13 y04





Moment relaxations for (P)

(P)
fmin = inf

L∈R[x]∗
L(f ) s.t. L has a representing measure µ on K

Truncate at degree 2t: (MOMt)

fmom,t = inf
L∈R[x]∗2t

L(f ) s.t. L ≥ 0 on M(g)2t

= inf
y=(yα)|α|≤2t

f
T
y s.t. Mt(y) � 0, Mt−dj (gjy) � 0 ∀j ∈ [m]

(SOSt) fsos,t = sup λ s.t. f − λ ∈M(g)2t  dual SDP

fsos,t ≤ fmom,t ≤ fmin

Asymptotic convergence if K is compact [+ Archimedean condition]



Optimality criterion for moment relaxation (MOMt)

K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} dK = maxjddeg(gj)/2e

Theorem [CF 1996,2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]

Assume y is an optimal solution of (MOMt) such that

rank Ms(y) = rank Ms−dK (y) for some dK ≤ s ≤ t

• Then the relaxation is exact: fmom,t = fmin

• Moreover, one can compute the global minimizers:

VC(KerMs(y)) ⊆ { global minimizers of f on K},

with equality if rank Mt(y) is maximum (rank = # minimizers)



Remarks

I Many interior point algs for SDP give a max rank optimal solution

I Algorithm for computing the (finitely many) real roots of
polynomial equations (and real radical ideals)

[Lasserre-L-Rostalski 2008,2009]

I Finite convergence holds generically [Nie 2013]

I Finite convergence in the convex case

[Lasserre 2009, de Klerk-L 2011]

I Several implementations: GloptiPoly [Henrion-Lasserre], SOSTOOLS
[Prajna et al.], SparsePOP [Waki et al.], YALMIP [Löfberg]



Exploiting sparsity structure



For I ⊆ [n] xI := (xi )i∈I denotes the group of variables indexed by I .

Consider sets I1, . . . , IL ⊆ [n] for which the polynomials p, gj satisfy:

1. p = p1 + . . .+ pL, where each p` ∈ R[xI` ]

2. Each gj belongs to some R[xI` ]

Define the (weaker) bound: p̂sost = sup λ s.t. p − λ = s +
∑m

j=1 sjgj ,

where s =
∑L
`=1 s` with s` ∈ Σ[xI` ]2t , and sj ∈ Σ[xI` ] if gj ∈ R[xI` ]

Then, p̂sost ≤ psost ≤ pmin but p̂sost involves smaller psd matrices!

Theorem: [Lasserre 2006, Grimm-Netzer-Schweighofer 2007]
Assume the sets I1, . . . , IL satisfy the running intersection property (up
to reordering):

∀k ≥ 2 ∃k0 ≤ k − 1 s.t. Ik ∩ (I1 ∪ . . . ∪ Ik−1) ⊆ Ik0

and, for each l ≤ L, the polynomials gj using variables in Il generate an
Archimedean quadratic module.

Then limt→∞ p̂sost = pmin.



Example

• The polynomial

p(x) =∑n−3
i=1 (xi + 10xi+1)2 + 5(xi+2− xi+3)2 + (xi+1− 2xi+2)4 + 10(xi − 10xi+3)4

has sparsity structure satisfying (RIP) for the sets

I` = {`, `+ 1, `+ 2, `+ 3} for ` = 1, . . . , n − 3

• The polynomial

p(x) =
n∑

i=2

(aix1 + bixi )
4

has sparsity structure satisfying (RIP) for the sets

I` = {x1, x`} for ` = 2, . . . , n



Exploiting equations:
binary polynomial optimization



Back to the stability number α(G )

α(G ) = max p(x) :=
n∑

i=1

xi s.t. xixj = 0 (ij ∈ E ), x2i = xi (i ∈ [n])

Define the ideal IG (and its truncations IGt ):

IG = ({xixj : ij ∈ E} ∪ {x2i − xi : i ∈ [n)})

Moment bound of order t:

last(G ) := max
L∈(R[x]2t)∗

L(p) s.t. L(1) = 1, L ≥ 0 on Σ2t , L = 0 on IG2t

= max
n∑

i=1

yi s.t. y0 = 1, Mt(y) � 0, Ly = 0 on IG2t

Lemma: Assume y is feasible for the moment bound of order t.

1. yα depends only on the support I = {i ∈ [n] : αi ≥ 1} of α
 rename yα as zI .

2. Mt(y) is a flat extension of Mn(y) if t ≥ n + 1

3. Mt(y) is a flat extension of M01
t (z) := (zI∪J)|I |,|J|≤t .



More economical reformulation of the moment bound last(G ):

max
n∑

i=1

zi s.t. z∅ = 1, M01
t (z) � 0, zI = 0 if I contains an edge

Facts:

1. The bound of order 1 is the theta number: las1(G ) = ϑ(G )

2. The bound of order t = α(G ) is exact:

last(G ) = α(G ) if t ≥ α(G ).

3. Such more economical reformulation extends to any polynomial
optimization problem over {0, 1}n (or {±1}n)

Observation: This extends to K ⊆ VC(I ), where VC(I ) is finite. Then,
finite convergence holds and one gets a SDP reformulation for pmin using
matrices of size N = dimR[x ]/I

Key idea: Work in the quotient space R[x ]/I instead of R[x ].



Extension to the general

moment problem (GMP)



The general moment problem (GMP)

val := inf
µ

∫
K

f0dµ(x) s.t.

∫
K

fk(x)dµ(x) = bk (k ≤ m0), µ measure

Some instances:

• Minimizing a rational function f0/f1 (assuming f1 > 0 on K )

min
x∈K

f0(x)

f1(x)
= min

µ

∫
K

f0(x)dµ(x) s.t.

∫
K

f1(x)dµ(x) = 1

• Polynomial cubature rules: The (GMP) problem∫
K

xαdµ(x) =

∫
K

xαdx for all |α| ≤ d

has a solution µ which is finite atomic with N ≤
(
n+d
d

)
atoms

 cubature rule with N points, exact for integrating degree ≤ d
polynomials on K [Tchakaloff’57]



Duality for (GMP)

Primal (GMP):

val := inf
µ

∫
K

f0dµ(x) s.t.

∫
K

fk(x)dµ(x) = bk (k ≤ m0)

Dual program:

val∗ = sup
y∈Rm0

m0∑
k=1

bkyk s.t. f0 −
m0∑
k=1

yk fk ≥ 0 on K

Theorem: Assume (GMP) is feasible. Then, val∗ ≤ val,

with equality if there exists z ∈ Rm0+1 s.t.
∑m0

k=0 zk fk > 0 on K .

Then, (GMP) has an optimal solution µ, which is finite atomic

with at most m atoms.



Moment relaxations for (GMP)

Moment relaxation: for an integer t ≥ maxkddeg(fk)/2e

valt = inf L(f0) s.t. L(fk) = bk (k ≤ m0), L ≥ 0 on M(g)2t

Theorem: Assume the Archimedean condition holds for M(g) and there
exists z ∈ Rm0+1 such that

∑m0

k=0 zk fk > 0 on K . Then

val∗ = sup
t

valt = val.

Proof: As val∗ = val and supt valt ≤ val
it suffices to show val∗ ≤ supt valt .

Let ε > 0 and y feasible for val∗, i.e., f0 −
∑m0

k=1 yk fk ≥ 0 on K .

Then, (εz0 + 1)f0 +
∑m0

k=1(εzk − yk)fk > 0 on K , and thus belongs to
M(g)2t for some t.

Then, (εz0 + 1)L(f0) +
∑m0

k=1(εzk − yk)bk ≥ 0 ∀ L feasible for valt

Hence, bTy ≤ εbTz + (εz0 + 1)valt  val∗ ≤ supt valt



Flatness and finite convergence

Theorem:
Let t ≥ dK , maxkddeg(fk)/2e.
Let y be an optimal solution to the relaxation valt .

Assume that the flatness condition holds:

rank Ms(y) = rank Ms−dK (y) =: r for some s s.t. dK ≤ s ≤ t.

Then valt = val and (GMP) has an optimal solution µ which is finite
atomic with r atoms.

For more on (GMP) see the monograph ‘Moments, Positive Polynomials
and Their Applications’ of Lasserre (2009).



Some references

P. Parrilo: Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization, PhD thesis, 2000

J.-B. Lasserre: Global optimization with polynomials and the problem of
moments, SIAM J. Optimization, 2001

J.-B. Lasserre: Moments, Positive Polynomials and their Applications,
Imperial College Press, 2009

M. Laurent: Sums of squares, moment matrices and optimization over
polynomials, in IMA volume 149, 2009

M. Anjos and J.-B. Lasserre (eds): Handbook on Semidefinite, Conic and
Polynomial Optimization, Springer 2012

G. Blekherman, P. Parrilo, R. Thomas (eds): Semidefinite Optimization
and Convex Algebraic Geometry, MOS-SIAM Series on Optim., 2012.

J.B. Lasserre: Introduction to Polynomial and Semi-Algebraic
Optimization, Cambridge University Press, 2015


