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Solving polynomial equations

Finite rank moment matrices



Recap on polynomial optimization

Given polynomials p, g1, · · · , gm, compute:

pmin = inf
x∈K

p(x), K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}.

Recall:

• p = (pα)α is the vector of coefficients of p.

• [x ]∞ = (xα)α∈Nn is the vector of monomials.

• p(x) =
∑

α pαx
α = pT[x ]∞.

• Define the set C∞(K ) = conv{[x ]∞ : x ∈ K}.

• Then, pmin = infx∈K pT[x ]∞ = infy=(yα)∈RNn{pTy : y ∈ C∞(K )}.

Goal: Describe the set C∞(K )



Plan of the lecture

1. For an ideal I ⊆ R[x ], basic facts about the quotient algebra
A = R[x ]/I :

• Relate dimA and |VC(I )|.
• The eigenvalue method to find VC(I ).

2. Moment matrices M(y):

• The kernel of M(y) is an ideal I .
• If M(y) � 0 then I is a real radical ideal.

3. Characterization of the sequences y ∈ C∞(K ) in terms of
positivity and finite rank condition on the moment matrix M(y).



Ideals and varieties

Let I ⊆ C[x ] be an ideal.

• VC(I ) = {x ∈ Cn : f (x) = 0 ∀f ∈ I} is the complex variety of I .

• VR(I ) = VC(I ) ∩ Rn is the real variety of I .

• If I = (h1, · · · , hm) is generated by h1, · · · , hm, the elements
v ∈ VC(I ) are the common complex roots of h1, · · · , hm.

• The vanishing ideal of a subset V ⊆ Cn is

I(V ) = {f ∈ C[x ] : f (v) = 0 ∀v ∈ V }.

• Clearly: I ⊆ I(VC(I )).



Radical ideals and Hilbert’s Nullstellensatz

• The radical of I is the ideal:

√
I = {f ∈ C[x ] : f m ∈ I for some m ∈ N}.

• Clearly: I ⊆
√
I ⊆ I(VC(I )).

• Example: For I = (x2), VC(I ) = {0}, x ∈
√
I , but x 6∈ I .

• Hilbert’s Nullstellensatz:
√
I = I(VC(I )).

A polynomial f vanishes at all common complex roots of I if and
only if some power of f belongs to I .

• Definition: The ideal I is said to be radical if I =
√
I

or, equivalently, if I = I(VC(I )).



Real radical ideals & the Real Nullstellensatz

Let I be an ideal in R[x ].

• The real radical of I is the ideal:

R√
I = {f ∈ R[x ] : f 2m + s ∈ I for some m ∈ N, s ∈ Σ}.

• Clearly: I ⊆ R√I ⊆ I(VR(I )).

• Example: For I = (x2 + y2), we have VR(I ) = {(0, 0)}.
Then, x , y ∈ R√I , but x , y 6∈ I .

• Real Nullstellensatz: R√I = I(VR(I )).

• Definition: The ideal I is said to be real radical if I = R√I
or, equivalently, if I = I(VR(I )).



Some technical lemmas

1. Lemma 1: I is real radical if and only if

∀f1, · · · , fm ∈ R[x ] f 21 + · · ·+ f 2m ∈ I =⇒ f1, · · · , fm ∈ I .

2. Lemma 2: If I ⊆ R[x ] is a real radical ideal and |VR(I )| <∞, then

VC(I ) = VR(I ).

3. Lemma 3: Let V ⊆ Cn be a finite set. There exist interpolation
polynomials pv ∈ C[x ] for v ∈ V , i.e., satisfying:

pv (u) = δu,v ∀u, v ∈ V .

If V = V , the interpolation polynomials pv can be chosen in R[x ].

For any polynomial f ∈ C[x ], f −
∑

v∈VC(I )
f (v)pv ∈ I(V ).



The quotient algebra R[x ]/I



The quotient algebra C[x ]/I

Let I ⊆ C[x ] be an ideal.

The quotient A = C[x ]/I is an algebra:

• Elements: cosets [f ] = f + I = {f + q : q ∈ I}.

• Addition: [f ] + [g ] = [f + g ].

• Scalar multiplication: λ[f ] = [λf ].

• Multiplication: [f ][g ] = [fg ].

A set B = {[b1], [b2], . . .} ⊆ A is a linear basis of A if any polynomial
f ∈ C[x ] can be written (uniquely) as

[f ] =
∑
i

λi [bi ] i.e., f =
∑
i

λibi + q,

where λi ∈ C and q ∈ I .



The dimension of A = C[x ]/I

Lemma 4: Let pv (v ∈ VC(I )) be interpolation polynomials at VC(I )
and define

L := {[pv ] : v ∈ VC(I )}.

• L is linearly independent in A.

• L is generating in C[x ]/I(VC(I )).

• L is a basis of A if I is radical.

Theorem:

1. dimA <∞ ⇐⇒ |VC(I )| <∞.

2. Assume |VC(I ) <∞. Then,

|VC(I )| ≤ dimA,

with equality if and only if the ideal I is radical (i.e., I =
√
I ).



Multiplication operators and roots of equations

Given a polynomial h, define the ‘multiplication by h’ linear map:

mh : A → A
[f ] 7→ [fh].

Theorem: Assume |VC(I )| <∞.

1. Let B = {[b1], · · · , [bN ]} be a basis of A and let Mh be the matrix
of mh in the basis B. For v ∈ VC(I ), the vector [v ]B = (bi (v))Ni=1 is
a left eigenvector of Mh:

[v ]B
TMh = h(v)[v ]B

T.

2. {h(v) : v ∈ VC(I )} is the set of all the eigenvalues of Mh.

 Can compute VC(I ) via the eigenvalues/eigenvectors of Mh

for random linear h =
∑n

i=1 hixi  the eigenvalues h(v) are
all distinct, so one can recover [v ]B and thus v .



Univariate example

• Let I = (x3 − 6x2 + 11x − 6) be generated by

x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3).

• Thus: VC(I ) = {1, 2, 3}.

• The set B = {[1], [x ], [x2]} is a basis of A = R[x ]/I .

• ‘Multiplication by x ’ matrix (companion matrix):

Mx =


[x ] [x2] [x3]

[1] 0 0 6
[x ] 1 0 −11
[x2] 0 1 6


• MT

x has three eigenvectors:

1. (1, 1, 1) with eigenvalue λ = 1,

2. (1, 2, 4) with eigenvalue λ = 2,

3. (1, 3, 9) with eigenvalue λ = 3.

Eigenvectors are indeed of the form [v ]B = (1, v , v2) for v ∈ {1, 2, 3}.



Finite rank moment matrices



Recap on moment matrices

Definition: Let y = (yα)α be a sequence of real numbers indexed by
Nn.

1. Define the corresponding linear functional Ly on R[x ]:

Ly : R[x ] → R
xα 7→ Ly (xα) = yα

f =
∑

α fαx
α 7→ Ly (f ) =

∑
α fαyα.

2. Define the moment matrix M(y), as the real symmetric matrix
indexed by Nn with

M(y)α,β = Ly (xαxβ) = yα+β ∀α, β ∈ Nn.

Example: If y = [v ]∞ with v ∈ Rn, then Ly is the evaluation at v :

Ly (f ) = f (v) ∀f ∈ R[x ],

and
M(y) = (vα+β)α,β.



Positivity conditions for M(y) and Ly

Lemma 5: Let y = (yα)α and Ly the associated linear functional on
R[x ].

For f , g ∈ R[x ]:

Ly (f 2) = f
T
M(y)f , Ly (gf 2) = f

T
M(gy)f ,

where gy ∈ RNn
is the new sequence with α-th entry

(gy)α = Ly (gxα) = Ly
((∑

γ

gγx
γ
)
xα
)

=
∑
γ

gγyα+γ ∀α ∈ Nn.

Therefore,
Ly ≥ 0 on Σ ⇐⇒ M(y) � 0,

Ly ≥ 0 on gΣ ⇐⇒ M(gy) � 0.



The kernel of M(y) is an ideal

Lemma 6: Let y = (yα)α and Ly the associated linear functional on
R[x ]. Set

I := {f ∈ R[x ] : Ly (hf ) = 0 ∀h ∈ R[x ]}.

Then:

1. A polynomial f belongs to I if and only if its coefficient vector f
belongs to the kernel of M(y).

So we can write: I = kerM(y).

2. I is an ideal in R[x ].

3. If M(y) � 0 then I is a real radical ideal.

using the facts:

• f ∈ I ⇐⇒ L(f 2) = 0.

• I is real radical if and only if
∑

i f
2
i ∈ I =⇒ fi ∈ I for all i



Characterization of the set C∞(K )

Finite rank moment matrix theorem: [Curto-Fialkow 1996, 2000]

Let K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}.

Let y = (yα)α and Ly the corresponding linear functional on R[x ].

The following assertions are equivalent:

(1) y ∈ C∞(K ), i.e., y =
∑r

i=1 λi [vi ]∞ for λi > 0,
∑

i λi = 1, vi ∈ K ,

i.e., y has a representing measure which is finite atomic and
supported by K .

(2) y0 = 1, rank M(y) <∞, M(y) � 0 and M(gjy) � 0 for j ∈ [m].

(3) y0 = 1, rank M(y) <∞ and Ly ≥ 0 on Σ + g1Σ + · · ·+ gmΣ.



Proof of the implication (2) =⇒ (1)

1. I := kerM(y) is a real radical ideal. [since M(y) � 0]

2. dimR[x ]/I = rank M(y) =: r .

3. VC(I ) = {v1, · · · , vr} ⊆ Rn. [I real radical with finite variety]

4. Let pv1 , · · · , pvr ∈ R[x ] be interpolation polynomials at v1, . . . , vr .
Their cosets form a basis of R[x ]/I .

5. Ly =
∑r

i=1 Ly (pvi )Lvi . [Lvi = ‘evaluation at vi ’ liner functional]

6. Ly (pvi ) > 0. [since pvi − (pvi )
2 ∈ I ]

7.
∑r

i=1 Ly (pvi ) = 1. [since 1−
∑r

i=1 pvi ∈ I ]

8. v1, · · · , vr ∈ K . [since 0 ≤ Ly (gj(pvi )
2) = Ly (pvi )gj(vi )]

We are done:

y =
r∑

i=1

Ly (pvi )[vi ]∞ ∈ C∞(K ).



Polynomial optimization:

Stopping criterion (flatness condition)

Extracting global minimizers



Flat extension of matrices

Lemma 1: Consider a matrix in block form: X =

(
A B
BT C

)
.

Assume rank X = rank A (call X a flat extension of A). Then

kerX = ker(A B)

Lemma 2: Given y ∈ RNn
2s , assume rank Ms(y) = rank Ms−1(y),

i.e., Ms(y) is a flat extension of Ms−1(y) (then call y flat).
Then, for any polynomials f , g :

f ∈ kerMs(y), deg(fg) ≤ s =⇒ fg ∈ kerMs(y).

Proof:
• Suffices to show the result for g = xi (then iterate).

• Suffices to show L(u(fxi )) = 0 ∀u ∈ R[x ]s−1. [by Lemma 1]

Indeed: L(u(fxi )) = L((xiu)f ) = 0 as deg(xiu) ≤ s and f ∈ kerMs(y).

Hence: kerMs(y) behaves like a ‘truncated’ ideal.



Flat extension of moment matrices

Theorem 1: [Flat extension theorem of Curto-Fialkow 1996]
Given y ∈ RNn

2s , assume:

rankMs(y) = rankMs−1(y).

Then one can extend y to a sequence ỹ ∈ RNn
satisfying:

rank M(ỹ) = rank Ms(y).

Moreover, the ideal I = kerM(ỹ) satisfies:

(1) If {α1, · · · , αr} ⊆ Nn
s−1 indexes a column base of Ms−1(y),

then {[xα1 ], · · · , [xαr ]} is a base of R[x ]/I .

(2) I is generated by the polynomials in kerMs(y):

I = (kerMs(y)).



Sketch of proof of Theorem 1

Goal: Find a matrix M =

(
Ms(y) B
BT C

)
, indexed by Nn

s+1, satisfying:

(1) M is a flat extension of Ms(y): rank M = rank Ms(y) =: r

(2) M is a moment matrix: Mα,β = Mα′,β′ for all α, β, α′, β′ ∈ Nn
s+1

Key ideas:

• Let B = {xα1 , . . . , xαr } ⊆ R[x ]s−1 index a maximum linearly
independent set of columns of Ms(y).

• Let |γ| = t + 1. Say, γi ≥ 1. If such M exists it must satisfy:

xγ−ei − r(x) ∈ kerMs(y) ⊆ kerM, for some r ∈ Span(B)

and thus xγi − xi r(x) = xi (x
γ−ei − r(x)) ∈ kerM. [by Lemma 2]

This permits to define the γth column of M in terms of columns of
Ms(y) (and thus to define B and C ).

• Remains to verify that this is a good definition:
- it does not depend on the choice of index i such that γi ≥ 1,
- and the matrix M obtained in this way is a moment matrix.



Stopping criterion and extracting global minimizers

• K ∗p : set of all global minimizers of p in K .

• dp = ddeg(p)/2e, dK = max{ddeg(gj)/2e : j ∈ [m]}.

Theorem 2: [Lasserre 2001]
Let L be an optimal solution to

pmom,t = inf{L(p) : L ∈ (R[x ]2t)
∗, L(1) = 1, L ≥ 0 on M(g)2t}

with associated sequence y = (L(xα))α∈Nn
2s

. Assume:

rank Ms(y) = rank Ms−dK (y) for some s with max{dp, dK} ≤ s ≤ t.

Then:

(1) The relaxation is exact: pmom,t = pmin.

(2) All common roots of the polynomials in kerMs(y) are real and they
are global minimizers: VC(kerMs(y)) ⊆ K ∗p .

(3) If L is an optimal solution for which the matrix Mt(y) has
maximum possible rank, then:

VC(kerMs(y)) = K ∗p .



Proof of Theorem 2

1. Apply the ‘flat extension theorem’: There exists a sequence
ỹ ∈ RNn

extending the subsequence (yα)|α|≤2s satisfying:

(a) rank M(ỹ) = rank Ms(y) = rank Ms−dK (y) =: r .

(b) I := kerM(ỹ) = (kerMs(y)).

(c) If {α1, · · · , αr} ⊆ Nn
s−dK indexes a column basis of Ms−dK (y),

then B = {[xα1 ], · · · , [xαr ]} is a basis of R[x ]/I .

2. Apply the ‘finite rank moment matrix theorem’:

(a) VC(I ) = VC(kerMs(y))) = {v1, · · · , vr} ⊆ Rn.

(b) ỹ =
∑r

i=1 λi [vi ]∞, where vi ∈ K , λi > 0,
∑

i λi = 1.

(c) (yα)|α|≤2s =
∑r

i=1 λi [vi ]2s where vi ∈ K , λi > 0,
∑

i λi = 1.

3. Hence: pmom,t = pmin and v1, · · · , vr are global minimizers.



Proof of Theorem 2 (continued)

Assume now Ly is an optimal solution for which rank Mt(y) is
maximum.

That is, for any other optimal solution z to pmom,t , we have

rank Mt(z) ≤ rank Mt(y).

This implies

kerMt(y) ⊆ kerMt(z), and thus

kerMs(y) ⊆ kerMs(z),

VC(kerMs(z)) ⊆ VC(kerMs(y)) = VC(I ) = {v1, . . . , vr}. .

Let x∗ ∈ K be a global minimizer of p.

Then z = [x∗]2t is an optimal solution of pmom,t .

Therefore, {x∗} = VC(kerMs(z)) ⊆ {v1, . . . , vr}.



Some observations

• Use the ‘eigenvalue method’ to extract the global minimizers:
via the eigenvectors of the multiplication matrix Mh for h =

∑n
i=1 hixi .

All needed information is contained in Ms(y): the entries of
Mh =

∑n
i=1 hiMxi can be derived directly by expressing each [xix

αj ] in
the basis B = {[xα1 ], . . . , [xαr ]}.

• If the flatness condition holds then p has finitely many global
minimizers in K .

The converse is not true!

Example: Let K = {x :
∑n

i=1 x
2
i ≤ 1} and assume p is homogeneous,

p > 0 on Rn \ {0}, p is not SOS. Then, pmin = 0, attained only at 0.
But, psos,t = pmom,t < pmin = 0 for all t ≥ dp.

Fact: p ∈M(1−
∑

i x
2
i ) =⇒ p ∈ Σ

• The flatness condition holds generically. [Nie 2014]


