Polynomial Optimization

Sums of squares and moments

 Part 2
CWI

Monique Laurent

POEMA 1st Workshop — Florence, January 2020

Solving polynomial equations

Finite rank moment matrices

Recap on polynomial optimization

Given polynomials p, g_{1}, \cdots, g_{m}, compute:

$$
p_{\min }=\inf _{x \in K} p(x), \quad K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0\right\}
$$

Recall:

- $\bar{p}=\left(p_{\alpha}\right)_{\alpha}$ is the vector of coefficients of p.
- $[x]_{\infty}=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is the vector of monomials.
- $p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}=\bar{p}^{\top}[x]_{\infty}$.
- Define the set $\mathcal{C}_{\infty}(K)=\operatorname{conv}\left\{[x]_{\infty}: x \in K\right\}$.
- Then, $p_{\text {min }}=\inf _{x \in K} \bar{p}^{\top}[x]_{\infty}=\inf _{y=\left(y_{\alpha}\right) \in \mathbb{R}^{\mathbb{N}^{n}}}\left\{\bar{p}^{\top} y: y \in \mathcal{C}_{\infty}(K)\right\}$.

Goal: Describe the set $\mathcal{C}_{\infty}(K)$

Plan of the lecture

1. For an ideal $I \subseteq \mathbb{R}[x]$, basic facts about the quotient algebra $\mathcal{A}=\mathbb{R}[x] / I:$

- Relate $\operatorname{dim} \mathcal{A}$ and $\left|V_{\mathbb{C}}(I)\right|$.
- The eigenvalue method to find $V_{\mathbb{C}}(I)$.

2. Moment matrices $M(y)$:

- The kernel of $M(y)$ is an ideal I.
- If $M(y) \succeq 0$ then $/$ is a real radical ideal.

3. Characterization of the sequences $y \in \mathcal{C}_{\infty}(K)$ in terms of positivity and finite rank condition on the moment matrix $M(y)$.

Ideals and varieties

Let $I \subseteq \mathbb{C}[x]$ be an ideal.

- $V_{\mathbb{C}}(I)=\left\{x \in \mathbb{C}^{n}: f(x)=0 \forall f \in I\right\}$ is the complex variety of I.
- $V_{\mathbb{R}}(I)=V_{\mathbb{C}}(I) \cap \mathbb{R}^{n}$ is the real variety of I.
- If $I=\left(h_{1}, \cdots, h_{m}\right)$ is generated by h_{1}, \cdots, h_{m}, the elements $v \in V_{\mathbb{C}}(I)$ are the common complex roots of h_{1}, \cdots, h_{m}.
- The vanishing ideal of a subset $V \subseteq \mathbb{C}^{n}$ is

$$
\mathcal{I}(V)=\{f \in \mathbb{C}[x]: f(v)=0 \forall v \in V\}
$$

- Clearly: $I \subseteq \mathcal{I}\left(V_{\mathbb{C}}(I)\right)$.

Radical ideals and Hilbert's Nullstellensatz

- The radical of I is the ideal:

$$
\sqrt{I}=\left\{f \in \mathbb{C}[x]: f^{m} \in I \text { for some } m \in \mathbb{N}\right\}
$$

- Clearly: $I \subseteq \sqrt{I} \subseteq \mathcal{I}\left(V_{\mathbb{C}}(I)\right)$.
- Example: For $I=\left(x^{2}\right), V_{\mathbb{C}}(I)=\{0\}, x \in \sqrt{I}$, but $x \notin I$.
- Hilbert's Nullstellensatz: $\sqrt{I}=\mathcal{I}\left(V_{\mathbb{C}}(I)\right)$.

A polynomial f vanishes at all common complex roots of I if and only if some power of f belongs to I.

- Definition: The ideal I is said to be radical if $I=\sqrt{I}$ or, equivalently, if $I=\mathcal{I}\left(V_{\mathbb{C}}(I)\right)$.

Real radical ideals \& the Real Nullstellensatz

Let $/$ be an ideal in $\mathbb{R}[x]$.

- The real radical of I is the ideal:

$$
\sqrt[\mathbb{R}]{I}=\left\{f \in \mathbb{R}[x]: f^{2 m}+s \in I \quad \text { for some } m \in \mathbb{N}, s \in \Sigma\right\}
$$

- Clearly: $I \subseteq \sqrt[\mathbb{R}]{I} \subseteq \mathcal{I}\left(V_{\mathbb{R}}(I)\right)$.
- Example: For $I=\left(x^{2}+y^{2}\right)$, we have $V_{\mathbb{R}}(I)=\{(0,0)\}$. Then, $x, y \in \sqrt[\mathbb{R}]{I}$, but $x, y \notin I$.
- Real Nullstellensatz: $\sqrt[\mathbb{R}]{I}=\mathcal{I}\left(V_{\mathbb{R}}(I)\right)$.
- Definition: The ideal I is said to be real radical if $I=\sqrt[R]{I}$ or, equivalently, if $I=\mathcal{I}\left(V_{\mathbb{R}}(I)\right)$.

Some technical lemmas

1. Lemma 1: I is real radical if and only if

$$
\forall f_{1}, \cdots, f_{m} \in \mathbb{R}[x] \quad f_{1}^{2}+\cdots+f_{m}^{2} \in I \Longrightarrow f_{1}, \cdots, f_{m} \in I
$$

2. Lemma 2: If $I \subseteq \mathbb{R}[x]$ is a real radical ideal and $\left|V_{\mathbb{R}}(I)\right|<\infty$, then

$$
V_{\mathbb{C}}(I)=V_{\mathbb{R}}(I)
$$

3. Lemma 3: Let $V \subseteq \mathbb{C}^{n}$ be a finite set. There exist interpolation polynomials $p_{v} \in \mathbb{C}[x]$ for $v \in V$, i.e., satisfying:

$$
p_{v}(u)=\delta_{u, v} \quad \forall u, v \in V .
$$

If $V=\bar{V}$, the interpolation polynomials p_{V} can be chosen in $\mathbb{R}[x]$.
For any polynomial $f \in \mathbb{C}[x], \quad f-\sum_{v \in V_{\mathbb{C}}(I)} f(v) p_{v} \in \mathcal{I}(V)$.

The quotient algebra $\mathbb{R}[x] / /$

The quotient algebra $\mathbb{C}[x] /$ /

Let $I \subseteq \mathbb{C}[x]$ be an ideal.
The quotient $\mathcal{A}=\mathbb{C}[x] / I$ is an algebra:

- Elements: cosets $[f]=f+I=\{f+q: q \in I\}$.
- Addition: $[f]+[g]=[f+g]$.
- Scalar multiplication: $\lambda[f]=[\lambda f]$.
- Multiplication: $[f][g]=[f g]$.

A set $\mathcal{B}=\left\{\left[b_{1}\right],\left[b_{2}\right], \ldots\right\} \subseteq \mathcal{A}$ is a linear basis of \mathcal{A} if any polynomial $f \in \mathbb{C}[x]$ can be written (uniquely) as

$$
[f]=\sum_{i} \lambda_{i}\left[b_{i}\right] \quad \text { i.e., } \quad f=\sum_{i} \lambda_{i} b_{i}+q
$$

where $\lambda_{i} \in \mathbb{C}$ and $q \in I$.

The dimension of $\mathcal{A}=\mathbb{C}[x] / /$

Lemma 4: Let $p_{v}\left(v \in V_{\mathbb{C}}(I)\right)$ be interpolation polynomials at $V_{\mathbb{C}}(I)$ and define

$$
\mathcal{L}:=\left\{\left[p_{v}\right]: v \in V_{\mathbb{C}}(I)\right\} .
$$

- \mathcal{L} is linearly independent in \mathcal{A}.
- \mathcal{L} is generating in $\mathbb{C}[x] / \mathcal{I}\left(V_{\mathbb{C}}(I)\right)$.
- \mathcal{L} is a basis of \mathcal{A} if l is radical.

Theorem:

1. $\operatorname{dim} \mathcal{A}<\infty \Longleftrightarrow\left|V_{\mathbb{C}}(I)\right|<\infty$.
2. Assume $\mid V_{\mathbb{C}}(I)<\infty$. Then,

$$
\left|V_{\mathbb{C}}(I)\right| \leq \operatorname{dim} \mathcal{A}
$$

with equality if and only if the ideal I is radical (i.e., $I=\sqrt{I}$).

Multiplication operators and roots of equations

Given a polynomial h, define the 'multiplication by h ' linear map:

$$
\begin{aligned}
m_{h}: & \rightarrow \mathcal{A} \\
{[f] } & \mapsto[f h] .
\end{aligned}
$$

Theorem: Assume $\left|V_{\mathbb{C}}(I)\right|<\infty$.

1. Let $\mathcal{B}=\left\{\left[b_{1}\right], \cdots,\left[b_{N}\right]\right\}$ be a basis of \mathcal{A} and let M_{h} be the matrix of m_{h} in the basis \mathcal{B}. For $v \in V_{\mathbb{C}}(I)$, the vector $[v]_{\mathcal{B}}=\left(b_{i}(v)\right)_{i=1}^{N}$ is a left eigenvector of M_{h} :

$$
[v]_{\mathcal{B}}{ }^{\top} M_{h}=h(v)[v]_{\mathcal{B}}{ }^{\top} .
$$

2. $\left\{h(v): v \in V_{\mathbb{C}}(I)\right\}$ is the set of all the eigenvalues of M_{h}.
\rightsquigarrow Can compute $V_{\mathbb{C}}(I)$ via the eigenvalues/eigenvectors of M_{h} for random linear $h=\sum_{i=1}^{n} h_{i} x_{i} \rightsquigarrow$ the eigenvalues $h(v)$ are all distinct, so one can recover $[v]_{\mathcal{B}}$ and thus v.

Univariate example

- Let $I=\left(x^{3}-6 x^{2}+11 x-6\right)$ be generated by

$$
x^{3}-6 x^{2}+11 x-6=(x-1)(x-2)(x-3)
$$

- Thus: $V_{\mathbb{C}}(I)=\{1,2,3\}$.
- The set $\mathcal{B}=\left\{[1],[x],\left[x^{2}\right]\right\}$ is a basis of $\mathcal{A}=\mathbb{R}[x] / I$.
- 'Multiplication by x ' matrix (companion matrix):

$$
\left.M_{x}=\begin{array}{c}
{[x]} \\
{[1]} \\
{[x]} \\
{\left[x^{2}\right]}
\end{array} \begin{array}{ccc}
{\left[x^{2}\right]} & {\left[x^{3}\right]} \\
0 & 0 & 6 \\
1 & 0 & -11 \\
0 & 1 & 6
\end{array}\right)
$$

- M_{x}^{\top} has three eigenvectors:

1. $(1,1,1)$ with eigenvalue $\lambda=1$,
2. $(1,2,4)$ with eigenvalue $\lambda=2$,
3. $(1,3,9)$ with eigenvalue $\lambda=3$.

Eigenvectors are indeed of the form $[v]_{\mathcal{B}}=\left(1, v, v^{2}\right)$ for $v \in\{1,2,3\}$.

Finite rank moment matrices

Recap on moment matrices

Definition: Let $y=\left(y_{\alpha}\right)_{\alpha}$ be a sequence of real numbers indexed by \mathbb{N}^{n}.

1. Define the corresponding linear functional L_{y} on $\mathbb{R}[x]$:

$$
\begin{aligned}
L_{y}: \quad \mathbb{R}[x] & \rightarrow \mathbb{R} \\
x^{\alpha} & \mapsto L_{y}\left(x^{\alpha}\right)=y_{\alpha} \\
f=\sum_{\alpha} f_{\alpha} x^{\alpha} & \mapsto L_{y}(f)=\sum_{\alpha} f_{\alpha} y_{\alpha} .
\end{aligned}
$$

2. Define the moment matrix $M(y)$, as the real symmetric matrix indexed by \mathbb{N}^{n} with

$$
M(y)_{\alpha, \beta}=L_{y}\left(x^{\alpha} x^{\beta}\right)=y_{\alpha+\beta} \quad \forall \alpha, \beta \in \mathbb{N}^{n} .
$$

Example: If $y=[v]_{\infty}$ with $v \in \mathbb{R}^{n}$, then L_{y} is the evaluation at v :

$$
L_{y}(f)=f(v) \quad \forall f \in \mathbb{R}[x]
$$

and

$$
M(y)=\left(v^{\alpha+\beta}\right)_{\alpha, \beta}
$$

Positivity conditions for $M(y)$ and L_{y}

Lemma 5: Let $y=\left(y_{\alpha}\right)_{\alpha}$ and L_{y} the associated linear functional on $\mathbb{R}[x]$.
For $f, g \in \mathbb{R}[x]$:

$$
L_{y}\left(f^{2}\right)=\bar{f}^{\top} M(y) \bar{f}, \quad L_{y}\left(g f^{2}\right)=\bar{f}^{\top} M(g y) \bar{f}
$$

where gy $\in \mathbb{R}^{\mathbb{N}^{n}}$ is the new sequence with α-th entry

$$
(g y)_{\alpha}=L_{y}\left(g x^{\alpha}\right)=L_{y}\left(\left(\sum_{\gamma} g_{\gamma} x^{\gamma}\right) x^{\alpha}\right)=\sum_{\gamma} g_{\gamma} y_{\alpha+\gamma} \quad \forall \alpha \in \mathbb{N}^{n}
$$

Therefore,

$$
\begin{gathered}
L_{y} \geq 0 \text { on } \Sigma \Longleftrightarrow M(y) \succeq 0 \\
L_{y} \geq 0 \text { on } g \Sigma \Longleftrightarrow M(g y) \succeq 0
\end{gathered}
$$

The kernel of $M(y)$ is an ideal

Lemma 6: Let $y=\left(y_{\alpha}\right)_{\alpha}$ and L_{y} the associated linear functional on $\mathbb{R}[x]$. Set

$$
I:=\left\{f \in \mathbb{R}[x]: L_{y}(h f)=0 \forall h \in \mathbb{R}[x]\right\} .
$$

Then:

1. A polynomial f belongs to $/$ if and only if its coefficient vector \bar{f} belongs to the kernel of $M(y)$.

So we can write: $I=\operatorname{ker} M(y)$.
2. I is an ideal in $\mathbb{R}[x]$.
3. If $M(y) \succeq 0$ then / is a real radical ideal. using the facts:

- $f \in I \Longleftrightarrow L\left(f^{2}\right)=0$.
- I is real radical if and only if $\sum_{i} f_{i}^{2} \in I \Longrightarrow f_{i} \in I$ for all i

Characterization of the set $\mathcal{C}_{\infty}(K)$

Finite rank moment matrix theorem: [Curto-Fialkow 1996, 2000]
Let $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0\right\}$.
Let $y=\left(y_{\alpha}\right)_{\alpha}$ and L_{y} the corresponding linear functional on $\mathbb{R}[x]$.
The following assertions are equivalent:
(1) $y \in \mathcal{C}_{\infty}(K)$, i.e., $y=\sum_{i=1}^{r} \lambda_{i}\left[v_{i}\right]_{\infty}$ for $\lambda_{i}>0, \sum_{i} \lambda_{i}=1, v_{i} \in K$, i.e., y has a representing measure which is finite atomic and supported by K.
(2) $y_{0}=1$, rank $M(y)<\infty, M(y) \succeq 0$ and $M\left(g_{j} y\right) \succeq 0$ for $j \in[m]$.
(3) $y_{0}=1$, rank $M(y)<\infty$ and $L_{y} \geq 0$ on $\Sigma+g_{1} \Sigma+\cdots+g_{m} \Sigma$.

Proof of the implication $(2) \Longrightarrow(1)$

1. $I:=\operatorname{ker} M(y)$ is a real radical ideal. [since $M(y) \succeq 0$]
2. $\operatorname{dim} \mathbb{R}[x] / I=\operatorname{rank} M(y)=: r$.
3. $V_{\mathbb{C}}(I)=\left\{v_{1}, \cdots, v_{r}\right\} \subseteq \mathbb{R}^{n}$.
[/ real radical with finite variety]
4. Let $p_{v_{1}}, \cdots, p_{v_{r}} \in \mathbb{R}[x]$ be interpolation polynomials at v_{1}, \ldots, v_{r}. Their cosets form a basis of $\mathbb{R}[x] / /$.
5. $L_{y}=\sum_{i=1}^{r} L_{y}\left(p_{v_{i}}\right) \mathcal{L}_{v_{i}} . \quad\left[\mathcal{L}_{v_{i}}=\right.$ 'evaluation at v_{i} ' liner functional $]$
6. $L_{y}\left(p_{v_{i}}\right)>0$. $\left[\right.$ since $\left.p_{v_{i}}-\left(p_{v_{i}}\right)^{2} \in I\right]$
7. $\sum_{i=1}^{r} L_{y}\left(p_{v_{i}}\right)=1$.
$\left[\right.$ since $\left.1-\sum_{i=1}^{r} p_{v_{i}} \in I\right]$
8. $v_{1}, \cdots, v_{r} \in K$.
$\left[\right.$ since $\left.0 \leq L_{y}\left(g_{j}\left(p_{v_{i}}\right)^{2}\right)=L_{y}\left(p_{v_{i}}\right) g_{j}\left(v_{i}\right)\right]$
We are done:

$$
y=\sum_{i=1}^{r} L_{y}\left(p_{v_{i}}\right)\left[v_{i}\right]_{\infty} \in \mathcal{C}_{\infty}(K)
$$

Polynomial optimization:
Stopping criterion (flatness condition)
Extracting global minimizers

Flat extension of matrices

Lemma 1: Consider a matrix in block form: $X=\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right)$. Assume $\operatorname{rank} X=\operatorname{rank} A \quad$ (call X a flat extension of A). Then

$$
\operatorname{ker} X=\operatorname{ker}(A B)
$$

Lemma 2: Given $y \in \mathbb{R}^{\mathbb{N}_{2 s}^{n}}$, assume $\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)$, i.e., $M_{s}(y)$ is a flat extension of $M_{s-1}(y)$ (then call y flat).

Then, for any polynomials f, g :

$$
f \in \operatorname{ker} M_{s}(y), \operatorname{deg}(f g) \leq s \Longrightarrow f g \in \operatorname{ker} M_{s}(y) .
$$

Proof:

- Suffices to show the result for $g=x_{i}$ (then iterate).
- Suffices to show $L\left(u\left(f x_{i}\right)\right)=0 \quad \forall u \in \mathbb{R}[x]_{s-1}$. [by Lemma 1] Indeed: $L\left(u\left(f x_{i}\right)\right)=L\left(\left(x_{i} u\right) f\right)=0$ as $\operatorname{deg}\left(x_{i} u\right) \leq s$ and $f \in \operatorname{ker} M_{s}(y)$.

Hence: $\operatorname{ker} M_{s}(y)$ behaves like a 'truncated' ideal.

Flat extension of moment matrices

Theorem 1: [Flat extension theorem of Curto-Fialkow 1996] Given $y \in \mathbb{R}^{\mathbb{N}_{2 s}^{n}}$, assume:

$$
\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-1}(y)
$$

Then one can extend y to a sequence $\tilde{y} \in \mathbb{R}^{\mathbb{N}^{n}}$ satisfying:

$$
\operatorname{rank} M(\tilde{y})=\operatorname{rank} M_{s}(y)
$$

Moreover, the ideal $I=\operatorname{ker} M(\tilde{y})$ satisfies:
(1) If $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\} \subseteq \mathbb{N}_{s-1}^{n}$ indexes a column base of $M_{s-1}(y)$, then $\left\{\left[x^{\alpha_{1}}\right], \cdots,\left[x^{\alpha_{r}}\right]\right\}$ is a base of $\mathbb{R}[x] / /$.
(2) I is generated by the polynomials in $\operatorname{ker} M_{s}(y)$:

$$
I=\left(\operatorname{ker} M_{s}(y)\right)
$$

Sketch of proof of Theorem 1

Goal: Find a matrix $M=\left(\begin{array}{cc}M_{s}(y) & B \\ B^{\top} & C\end{array}\right)$, indexed by \mathbb{N}_{s+1}^{n}, satisfying:
(1) M is a flat extension of $M_{s}(y):$ rank $M=\operatorname{rank} M_{s}(y)=: r$
(2) M is a moment matrix: $M_{\alpha, \beta}=M_{\alpha^{\prime}, \beta^{\prime}}$ for all $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \mathbb{N}_{s+1}^{n}$

Key ideas:

- Let $\mathcal{B}=\left\{x^{\alpha_{1}}, \ldots, x^{\alpha_{r}}\right\} \subseteq \mathbb{R}[x]_{s-1}$ index a maximum linearly independent set of columns of $M_{s}(y)$.
- Let $|\gamma|=t+1$. Say, $\gamma_{i} \geq 1$. If such M exists it must satisfy: $x^{\gamma-e_{i}}-r(x) \in \operatorname{ker} M_{s}(y) \subseteq \operatorname{ker} M$, for some $r \in \operatorname{Span}(\mathcal{B})$ and thus $x_{i}^{\gamma}-x_{i} r(x)=x_{i}\left(x^{\gamma-e_{i}}-r(x)\right) \in \operatorname{ker} M$. [by Lemma 2]
This permits to define the γ th column of M in terms of columns of $M_{s}(y)$ (and thus to define B and C).
- Remains to verify that this is a good definition:
- it does not depend on the choice of index i such that $\gamma_{i} \geq 1$,
- and the matrix M obtained in this way is a moment matrix.

Stopping criterion and extracting global minimizers

- K_{p}^{*} : set of all global minimizers of p in K.
- $d_{p}=\lceil\operatorname{deg}(p) / 2\rceil, \quad d_{K}=\max \left\{\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil: j \in[m]\right\}$.

Theorem 2: [Lasserre 2001]
Let L be an optimal solution to

$$
p_{\text {mom }, t}=\inf \left\{L(p): L \in\left(\mathbb{R}[x]_{2 t}\right)^{*}, L(1)=1, L \geq 0 \text { on } \mathcal{M}(\mathbf{g})_{2 t}\right\}
$$

with associated sequence $y=\left(L\left(x^{\alpha}\right)\right)_{\alpha \in \mathbb{N}_{2 s}^{n}}$. Assume:
$\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-d_{K}}(y)$ for some s with $\max \left\{d_{p}, d_{K}\right\} \leq s \leq t$. Then:
(1) The relaxation is exact: $p_{\text {mom }, t}=p_{\text {min }}$.
(2) All common roots of the polynomials in $\operatorname{ker} M_{s}(y)$ are real and they are global minimizers: $\quad V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(y)\right) \subseteq K_{p}^{*}$.
(3) If L is an optimal solution for which the matrix $M_{t}(y)$ has maximum possible rank, then:

$$
V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(y)\right)=K_{p}^{*}
$$

Proof of Theorem 2

1. Apply the 'flat extension theorem': There exists a sequence $\tilde{y} \in \mathbb{R}^{\mathbb{N}^{n}}$ extending the subsequence $\left(y_{\alpha}\right)_{|\alpha| \leq 2 s}$ satisfying:
(a) $\operatorname{rank} M(\tilde{y})=\operatorname{rank} M_{s}(y)=\operatorname{rank} M_{s-d_{k}}(y)=: r$.
(b) $I:=\operatorname{ker} M(\tilde{y})=\left(\operatorname{ker} M_{s}(y)\right)$.
(c) If $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\} \subseteq \mathbb{N}_{s-d_{K}}^{n}$ indexes a column basis of $M_{s-d_{K}}(y)$, then $\mathcal{B}=\left\{\left[x^{\alpha_{1}}\right], \cdots,\left[x^{\alpha_{r}}\right]\right\}$ is a basis of $\mathbb{R}[x] / I$.
2. Apply the 'finite rank moment matrix theorem':
(a) $\left.V_{\mathbb{C}}(I)=V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(y)\right)\right)=\left\{v_{1}, \cdots, v_{r}\right\} \subseteq \mathbb{R}^{n}$.
(b) $\tilde{y}=\sum_{i=1}^{r} \lambda_{i}\left[v_{i}\right]_{\infty}$, where $v_{i} \in K, \lambda_{i}>0, \sum_{i} \lambda_{i}=1$.
(c) $\left(y_{\alpha}\right)_{|\alpha| \leq 2 s}=\sum_{i=1}^{r} \lambda_{i}\left[v_{i}\right]_{2 s}$ where $v_{i} \in K, \lambda_{i}>0, \sum_{i} \lambda_{i}=1$.
3. Hence: $p_{\mathrm{mom}, t}=p_{\min }$ and v_{1}, \cdots, v_{r} are global minimizers.

Proof of Theorem 2 (continued)

Assume now L_{y} is an optimal solution for which rank $M_{t}(y)$ is maximum.

That is, for any other optimal solution z to $p_{\text {mom, } t}$, we have $\operatorname{rank} M_{t}(z) \leq \operatorname{rank} M_{t}(y)$.

This implies
ker $M_{t}(y) \subseteq \operatorname{ker} M_{t}(z)$, and thus
$\operatorname{ker} M_{s}(y) \subseteq \operatorname{ker} M_{s}(z)$,
$V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(z)\right) \subseteq V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(y)\right)=V_{\mathbb{C}}(I)=\left\{v_{1}, \ldots, v_{r}\right\}$.
Let $x^{*} \in K$ be a global minimizer of p.
Then $z=\left[x^{*}\right]_{2 t}$ is an optimal solution of $p_{\text {mom }, t}$.
Therefore, $\left\{x^{*}\right\}=V_{\mathbb{C}}\left(\operatorname{ker} M_{s}(z)\right) \subseteq\left\{v_{1}, \ldots, v_{r}\right\}$.

Some observations

- Use the 'eigenvalue method' to extract the global minimizers: via the eigenvectors of the multiplication matrix M_{h} for $h=\sum_{i=1}^{n} h_{i} x_{i}$.

All needed information is contained in $M_{s}(y)$: the entries of $M_{h}=\sum_{i=1}^{n} h_{i} M_{x_{i}}$ can be derived directly by expressing each $\left[x_{i} x^{\alpha_{j}}\right]$ in the basis $\mathcal{B}=\left\{\left[x^{\alpha_{1}}\right], \ldots,\left[x^{\alpha_{r}}\right]\right\}$.

- If the flatness condition holds then p has finitely many global minimizers in K.

The converse is not true!
Example: Let $K=\left\{x: \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}$ and assume p is homogeneous, $p>0$ on $\mathbb{R}^{n} \backslash\{0\}, p$ is not SOS. Then, $p_{\text {min }}=0$, attained only at 0 . But, $\quad p_{\mathrm{sos}, t}=p_{\mathrm{mom}, t}<p_{\min }=0 \quad$ for all $t \geq d_{p}$.
Fact: $p \in \mathcal{M}\left(1-\sum_{i} x_{i}^{2}\right) \Longrightarrow p \in \Sigma$

- The flatness condition holds generically.

