Exercises to "Symmetries in POPs"

15. July 2020

Exercise 1 Let \mathbf{K} a field and G be a finite group acting linearly on \mathbf{K}^n . Show that the set of invariant polynomials $\mathbf{K}[X_1, \ldots, X_n]^G$ is a ring.

Exercise 2 Let **K** a field and *G* be a finite group acting linearly on \mathbf{K}^n and define for each $f \in \mathbf{K}[X_1, \ldots, X_n]$ the operator $R_G(f) := \frac{1}{|G|} \sum_{g \in G} f^g$. Show the following properties:

- 1. R_G is a $\mathbf{K}[X]^G$ -linear map.
- 2. For $f \in \mathbf{K}[X]$ we have $R_G(f) \in \mathbf{K}[X]^G$.
- 3. R_G is the identity map on $\mathbf{K}[X]^G$ i.e., $R_G(f) = f$ for all $f \in \mathbf{K}[X]^G$.

Exercise 3 Let $f \in \mathbf{R}[X, Y]$ be a symmetric polynomial of degree 4. Try to write down the conditions that f is a sum of squares polynomial using the Theorem presented in the lecture and compare it the the SDP you would obtain if you did not consider the symmetry.

Exercise 4 Let G be a finite group and $f_1, f_2 \in \mathbf{R}[X_1, \ldots, X_n]$ such that that both polynomials are contained in different isotypic components of $\mathbf{R}[X_1, \ldots, X_n]$. Use Schur's lemma to conclude that $R_G(f_1f_2) = 0$