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Motivation

Mathematical context:

Christoffel Darboux (CD) kernels are as old as orthogonal polynomials (∼ 19-th
century).

Fine properties of these objects have important consequences in approximation
theory (convergence of generalized Fourier series).

There is still a lot of activity going on.

Recently used in polynomial optimization contexts.

Polynomial optimization?

A CD kernel depdends on a (probability) measure µ on a Euclidean space Rp

It captures information on µ (support, density).

It is easily computed from moments.

Moments (or pseudomoments) of measures are typical outputs of Lassere’s
Hierarchy.
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How does it look like?
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Here µ is an empirical average µ = 1
n

∑n
i=1 δxi . Applications in statistics also.

Plan for today:
Introduction of these objects and first properties.
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Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. CD kernel captures measure theoretic properties: univariate case
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Christoffel-Darboux kernel

µ: Borel probability measure in Rp (compact support, absolutely continuous).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

(P,Q) 7→ ⟪P,Q⟫µ :=

∫
PQdµ,

defines a valid scalar product on Rd [X ].

(Rd [X ], ⟪·, ·⟫µ) is a finite dimensional, Hilbert space of functions from Rp to R.

Remark: discussions and more general conditions in exercises.
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Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö,
Bergman, Bochner, Kolmogorov, Aronszajn . . .

Reproducing property: For all d ∈ N, there exists Kµ
d : Rp×Rp 7→ R, symmetric such

that for all z ∈ Rp,
Kµ

d (z, ·) ∈ Rd [X ].

Kµ
d satifies the reproducing property, for all P ∈ Rd [X ] and z ∈ Rp,

P(z) = ⟪P(·),Kµ
d (z, ·)⟫

µ
=

∫
P(x)Kµ

d (z, x)dµ(x)

H = (Rd [X ], ⟪·, ·⟫µ) is called a Reproducing Kernel Hilbert Space (RKHS).
Generalize to any Hilbert space of functions with continuous pointwise evaluation.

Christoffel-Darboux kernel: K d
µ is the reproducing kernel of H.
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Computation from moments

µ: Borel probability measure in Rp (compact support, absolutely continuous).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Let {Pi}s(d)i=1 be any basis of Rd [X ],

vd : x 7→ (P1(x), . . . ,Ps(d)(x))T .

Mµ,d =
∫

vdvT
d dµ ∈ Rs(d)×s(d) (integral pointwise).

Then Mµ,d is invertible and for all x, y ∈ Rp,

Kµ
d (x, y) = vd(x)TM−1

µ,dvd(y).

Remark: If vd is the monomial basis, then we recover the usual moment matrix
(Tutorials by Mihai and Didier).
Remark: It does not depend on the choice of the basis.
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Relation with orthogonal polynomials

µ: Borel probability measure in Rp (compact support, absolutely continuous).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Relation with orthogonal polynomials

Let {Pi}s(d)i=1 be any orthonormal basis of Rd [X ] (w.r.t. ⟪·, ·⟫µ), then for all x, y ∈ Rp,

Kµ
d (x, y) =

s(d)∑
i=1

Pi (x)Pi (y).

Remark: monomial basis, Gram-Schmitt provides a canonical way to construct such a
basis. This is at the hear of the (rich) theory of orthogonal polynomials (see exercises).

Tip: Working in an orthonormal basis is often much more stable numerically. Inverting
the moment matrix of the uniform measure on [−1, 1] fails for d = 23.

9 / 19



Christoffel function

µ: Borel probability measure in Rp (compact support, absolutely continuous).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Christoffel function

Λµd : Rp 7→ [0, 1]

z 7→ min
P∈Rd [X ]

{∫
P2dµ : P(z) = 1

}
.

CD kernel and Christoffel function:

Λµd (z) =
1

Kµ
d (z, z)

,

for all z ∈ Rp. The optimal solution in definition of Λµd is

P(·) =
Kµ

d (·, z)

Kµ
d (z, z)

.
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Affine invariance

Let A : Rp 7→ Rp be an invertible affine map.

Push forward: A∗µ such that A∗µ = µ(A−1(B)), for all Borel sets B. Then for all
measurable f ∫

f (z)dA∗µ(z) =

∫
f (A(x))dµ(x).

Invariance:
For all x ∈ Rp

ΛA∗µd (A(x)) = Λµd (x).
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Affine invariance

With an image
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Here the push forward is simply the empirical average supported on images of the point
cloud by the affine map.

µ =
1

n

n∑
i=1

δxi , A∗µ =
1

n

n∑
i=1

δA(xi ).
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Pointwise evaluation and Bernstein-Markov property

Pointwise evaluation:
For all P ∈ Rd [X ] and z ∈ Rp, P(·)/P(z) evaluates to 1 at z.

P(z)2 ≤ K d
µ(z, z)

∫
P2dµ.

Bernstein-Markov property for µ with compact support S:

For all P ∈ Rd [X ],

sup
z∈S
|P(z)| ≤ C(d)‖P‖µ

where C(d)
1
d → 1 as d →∞.

sup
z∈S
|P(z)| ≤

√
sup
z∈S

Kµ
d (z, z)‖P‖µ
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Historical remarks

Univariate case (complex and real) since beginning of 20-th century:

quadrature, interpolation, approximation

orthogonal polynomials

potential theory

random matrices/polynomials

. . .

A few contributors

Szegö, Erdös, Turan, Freud, Totik, Máté, Nevai, . . .

Still an object of very active research (asymptotics, multivariate case).
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Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. CD kernel captures measure theoretic properties: univariate case
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Pure point part of a measure

Exercise: Let µ be a compactly supported probability measure on Rp and define Λµd , with
its variational form. Show that

lim
d→∞

Λµd (x0) = µ({x0}),

for all x0 in Rp.
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Typical value

Exercise: Let µ be a compactly supported absolutely continuous probability measure on
Rp. Let Z be a random variable with distribution µ, show that

EZ∼µ

[
(Λµd (Z))−1

]
=

(
d + p

p

)
∼ dp.
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Asymptotics for the Christoffel function: sublinear on the support

Maté, Nevai and Totik, (1991): p = 1 and dµ = f on [−1, 1] and 0 elsewhere, f > 0
continuous. For almost all x in [−1, 1]

lim
d→∞

Λµ,d(x)d = πf (x)
√

1− x2
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Asymptotics for the Christoffel function: linear outside the support

Stahl and Totik, (1992): p = 1 and dµ = f on [−1, 1] and 0 elsewhere, f > 0, for all
x 6∈ [−1, 1],

lim
d→∞

Λµ,d(x)
1
2d < 1
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