

Online learning weeks of the POEMA network

Didier Henrion

Polynomial optimization (revisited)

27 May 2020

This first lecture on polynomial optimization illustrates the main steps of the moment-SOS aka Lasserre hierarchy

Given a **nonlinear nonconvex** problem:

- 1. Reformulate it as a **linear** problem (at the price of enlarging or changing the space of solutions)
- 2. Solve approximately the linear problem with a hierarchy of tractable **convex** relaxations (of increasing size)
- 3. Ensure **convergence**: either the original problem is solved at a finite relaxation size, or its solution is approximated with increasing quality

At each step, conic duality is an essential ingredient

Dual spaces and cones

Given a vector space V, its **dual space** V' is the set of continuous linear functionals on V, with duality pairing $\langle x,y\rangle\in\mathbb{R}$ defined for all $x\in V$, $y\in V'$

Given a cone $K \subset V$, its **dual cone** $K' \subset V'$ is the set of positive continuous linear functionals on K i.e.

$$K' := \{ y \in V' : \langle x, y \rangle \ge 0, \, \forall x \in K \}$$

 K^{\prime} is always a **convex** cone, i.e. it is closed under addition and multiplication by a positive constant

Familiar self-dual convex cones

The linear cone

$$\{x \in \mathbb{R}^n : x_1 \ge 0, \dots, x_n \ge 0\}$$

the quadratic cone

$$\{x \in \mathbb{R}^n : x_1 \ge \sqrt{x_2^2 + \dots + x_n^2}\}$$

and the semidefinite cone

$$\{X \in \mathbb{S}^n : \langle y, Xy \rangle \ge 0, \forall y \in \mathbb{R}^n\}$$

are all self-dual convex cones

Infinite-dimensional convex cones

Given a compact set $X \subset \mathbb{R}^n$, the set of positive (non-negative) continuous **functions** on X is an infinite-dimensional convex cone

$$C(X)_{+} := \{ f \in C(X) : f(x) \ge 0, \forall x \in X \}.$$

By a Riesz representation theorem, its dual is the cone of Borel regular positive measures (for short, **measures**)

$$C(X)'_{+} := \{ \mu \in C(X)' : \mu(A) \ge 0, \forall A \in \mathcal{B}(X) \}$$

and the duality pairing is integration

$$\langle f, \mu \rangle := \int_X f(x) d\mu(x)$$

for all $f \in C(X)$, $\mu \in C(X)'$

Challenging finite-dimensional convex cones

The set of polynomials of degree at most d which are positive on compact $X \subset \mathbb{R}^n$ is a finite-dimensional convex cone

$$P(X)_d := \{ p \in \mathbb{R}[x]_d : p(x) = \sum_a p_a x^a \ge 0, \ \forall x \in X \} \subset \mathbb{R}^{\binom{n+d}{n}}$$

called the cone of **positive polynomials**

By the Riesz-Haviland theorem, its dual is the cone of $\mathbf{moments}$ of degree at most d of measures on X

$$P(X)'_d := \{ y \in \mathbb{R}^{\binom{n+d}{n}} : y_a = \int_X x^a d\mu(x), \ \mu \in C(X)'_+ \}$$

and the duality pairing is integration

$$\langle p, y \rangle := \sum_{a} p_a y_a = \sum_{a} p_a \int_X x^a d\mu(x) = \int_X \sum_{a} p_a x^a d\mu(x) = \int_X p(x) d\mu(x)$$

for all $p \in P(X)_d$, $y \in P(X)'_d$

Conic primal

Conic optimization consists of minimizing a linear function on an affine section of a convex cone

$$p^* = \inf_x \langle c, x \rangle$$

s.t. $Ax = b$
 $x \in K$

for given $A:V\to U'$, $b\in U'$, $c\in V'$ - let us call this the **primal**

When K is a linear, quadratic resp. semidefinite cone, this is called linear, quadratic resp. **semidefinite programming**, and the feasibility region (the affine section of the cone) is called a polyhedron, conic resp. **spectrahedron**

Spectrahedra are defined by linear matrix inequalities, LMIs

Conic duality

Given a conic problem

$$p^* = \inf_x \langle c, x \rangle$$

s.t. $Ax = b$
 $x \in K$

with data $A: V \to U'$, $b \in U'$, $c \in V'$, define the Lagrangian

$$\ell(x, y, z) := \langle c, x \rangle - \langle Ax - b, y \rangle - \langle z, x \rangle$$

where $x \in V$ are the **primal** variables, and $y \in U$, $z \in V'$ are Lagrange multipliers, or **dual** variables

Define the dual Lagrange function

$$d(y,z) := \inf_{x \in V} \ell(x,y,z)$$

and observe that $p^* \ge d(y,z)$ for all $y \in U$, $z \in K'$

Conic dual

The tightest lower bound on p^* is obtained with the **dual**

$$d^* = \sup_{y,z} d(y,z)$$

s.t. $z \in K'$

Rearrange the dual function as follows

$$d(y,z) = \inf_{x \in V} (\langle c, x \rangle - \langle Ax - b, y \rangle - \langle z, x \rangle) = \langle b, y \rangle + \inf_{x \in V} \langle c - A'y - z, x \rangle$$

(where $A':U\to V'$ is the adjoint map to A) and observe that it is finite only if z=c-A'y so that the dual can be formulated as a conic problem

$$d^* = \sup_y \langle b, y \rangle$$

s.t. $c - A'y \in K'$

Primal and dual conic problems

To summarize, these two problems are in duality

$$p^* = \inf_x \langle c, x \rangle$$
 $d^* = \sup_y \langle b, y \rangle$
s.t. $Ax = b$ s.t. $z = c - A'y$
 $x \in K$ $z \in K'$

Weak duality $p^* \ge d^*$ always holds, and strong duality also called **no duality gap** $p^* = d^*$ holds under some assumptions

If x^* is primal optimal and y^* is dual optimal, then x^* and $z^* := c - A'y^*$ are **complementary**: $\langle x^*, z^* \rangle = 0$

If there is no duality gap then primal and dual optimality holds if and only if complementarity holds - one can then expect a good behavior of **numerical optimization algorithms**

POP (Polynomial Optimization Problem)

Given polynomials $p, g_1, \dots g_m \in \mathbb{R}[x]$ of the indeterminate $x \in \mathbb{R}^n$, consider the **nonlinear nonconvex** global optimization problem

$$v^* = \min_x p(x)$$

s.t. $x \in X$

defined on the bounded basic semialgebraic set

$$X := \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots g_m(x) \ge 0\}$$

Step 1 - Linear reformulation

Primal linear reformulation

Instead of the POP

$$v^* = \min_x p(x)$$

s.t. $x \in X$

consider the linear problem (LP)

$$p^* = \inf_{\mu} \langle p, \mu \rangle$$

s.t. $\langle 1, \mu \rangle = 1$
 $\mu \in C(X)'_{+}$

Exercise 1.1: Prove that $v^* = p^*$ and that the LP has an optimal solution equal to the Dirac measure at any optimal solution of the POP

Dual linear reformulation

Dual to the primal LP

$$p^* = \inf_{\mu} \langle p, \mu \rangle$$

s.t. $\langle 1, \mu \rangle = 1$
 $\mu \in C(X)'_{+}$

is the LP

$$d^* = \sup_{v \in \mathbb{R}} v$$
s.t. $p - v \in C(X)_+$

Exercise 1.2: Derive the dual LP from the primal LP using convex duality. Prove that strong duality holds i.e. $p^* = d^*$. Give a graphical interpretation to the dual LP

Step 2 - Convex hierarchy

Moments and positive polynomials

POP is replaced with a primal and a dual LP

or equivalently

$$p^* = \inf_y \langle p, y \rangle$$

s.t. $\langle 1, y \rangle = 1$
 $y \in P(X)'_d$ $d^* = \sup_{v \in \mathbb{R}} v$
s.t. $p - v \in P(X)_d$

since p is a degree d polynomial

Approximating positive polynomials

The cone of positive polynomials

$$P(X)_d := \{ p \in \mathbb{R}[x]_d : p(x) \ge 0, \forall x \in X \}$$

on the bounded basic semialgebraic set

$$X := \{x \in \mathbb{R}^n : g_k(x) \ge 0, k = 1, \dots, m\}$$

is generally intractable, so we will approximate it

Denoting $g_0(x) := 1$ and enforcing (without loss of generality) $g_1(x) := R^2 - \sum_{i=1}^n x_i^2$ for R large enough, consider for $r \ge d$

$$Q(X)_{d,r} := \{ q \in \mathbb{R}[x]_d : q = \sum_{k=0}^m s_k g_k, \ s_k \in \Sigma, \ s_k q_k \in \mathbb{R}[x]_r \}$$

where Σ denotes polynomial sums of squares (SOS), and observe that it is an **inner approximation**: $Q(X)_{d,r} \subset P(X)_d$

Polynomial SOS

Observe that (the truncated quadratic module)

$$Q(X)_{d,r} := \{ q \in \mathbb{R}[x]_d : q = \sum_{k=0}^m s_k g_k, \ s_k \in \Sigma, \ s_k g_k \in \mathbb{R}[x]_r \}$$

is a projection of the SOS cone

Observe also that by construction

$$Q(X)_{d,r} \subset Q(X)_{d,r+1}$$

Exercise 1.3: Prove that deciding whether a polynomial is SOS can be reduced to semidefinite programming

Moment relaxations

Hence we have a hierarchy of tractable **inner approximations** for the cone of positive polynomials

$$Q(X)_{d,r} \subset Q(X)_{d,r+1} \subset P(X)_d$$

Using convex duality, we also have a hierarchy of tractable **outer approximations**, or **relaxations**, for the cone of moments

$$Q(X)'_{d,r} \supset Q(X)'_{d,r+1} \supset P(X)'_d$$

Elements of $Q(X)_{d,r}^{\prime}$ are sometimes called pseudo-moments

Exercise 1.4: Describe explicitly the moment cone relaxation $Q(X)_{d,r}^{\prime}$ as the projection of a spectrahedron

Moment-SOS hierarchy

Replace the intractable problems

$$p^* = \inf_{y} \langle p, y \rangle$$
s.t. $\langle 1, y \rangle = 1$

$$y \in P(X)'_d$$

$$d^* = \sup_{v \in \mathbb{R}} v$$
s.t. $p - v \in P(X)_d$

with the hierarchy of tractable problems for $r = d, d + 1, \dots$

$$p_r^* = \inf_y \langle p, y \rangle$$

s.t. $\langle 1, y \rangle = 1$
 $y \in Q(X)'_{d,r}$ $d_r^* = \sup_{v \in \mathbb{R}} v$
s.t. $p - v \in Q(X)_{d,r}$

Exercise 1.5: Prove that strong duality holds: $v_r^* := p_r^* = d_r^*$

Step 3 - Convergence

Convergence

Integer r is called the **relaxation order**

Since $Q(X)_{d,r} \subset Q(X)_{d,r+1} \subset P(X)_d$, we have a monotone non-decreasing sequence of lower bounds on the POP value:

$$v_r^* \le v_{r+1}^* \le v^*$$

Theorem (Putinar 1993): $\overline{Q(X)_{d,\infty}} = P(X)_d$

Theorem (Lasserre 2001): $v_{\infty}^* = v^*$

The moment-SOS hierarchy is known as the Lasserre hierarchy

Finite convergence

Theorem (Nie 2014): Generically $\exists r < \infty$ such that $v_r^* = v^*$

In other words, a vanishing small random perturbation of the input data of a given POP ensures finite convergence of the Lasserre hierarchy

We also have sufficient linear algebra conditions to ensure finite convergence, certify global optimality and extract minimizers

Software

The moment-SOS hierarchy is implemented in the **GloptiPoly** package for Matlab (2002)

Conic relaxations are solved by a dedicated solver, e.g. **SeDuMi**, **MOSEK** or **PENSDP**

Julia packages are currently being developed, e.g. **MomentOpt** by Tillmann Weisser or **MomentTools** by Lorenzo Baldi and Bernard Mourrain

This first lecture on polynomial optimization illustrates the main steps of the moment-SOS aka Lasserre hierarchy

Given a **nonlinear nonconvex** problem:

- 1. Reformulate it as a **linear** problem (at the price of enlarging or changing the space of solutions)
- 2. Solve approximately the linear problem with a hierarchy of tractable **convex** relaxations (of increasing size)
- 3. Ensure **convergence**: either the original problem is solved at a finite relaxation size, or its solution is approximated with increasing quality

At each step, conic duality is an essential ingredient

Teaser

In the next lectures we will bring some **dynamics** to polynomial optimization and the Lasserre hierarchy

First we will approximate the maximal positively invariant set for a discrete dynamical system

Then we will approximate the value function for the optimal control of ordinary differential equations

A key technical ingredient will be **occupation measures** and approximation of their support with **polynomial sublevel sets**