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This first lecture on polynomial optimization illustrates the main
steps of the moment-SOS aka Lasserre hierarchy

Given a nonlinear nonconvex problem:

1. Reformulate it as a linear problem (at the price of enlarging
or changing the space of solutions)

2. Solve approximately the linear problem with a hierarchy of
tractable convex relaxations (of increasing size)

3. Ensure convergence: either the original problem is solved
at a finite relaxation size, or its solution is approximated with
increasing quality

At each step, conic duality is an essential ingredient



Conic duality



Dual spaces and cones

Given a vector space V , its dual space V ′ is the set of continuous

linear functionals on V , with duality pairing 〈x, y〉 ∈ R defined for

all x ∈ V , y ∈ V ′

Given a cone K ⊂ V , its dual cone K′ ⊂ V ′ is the set of positive

continuous linear functionals on K i.e.

K′ := {y ∈ V ′ : 〈x, y〉 ≥ 0, ∀x ∈ K}

K′ is always a convex cone, i.e. it is closed under addition and

multiplication by a positive constant



Familiar self-dual convex cones

The linear cone

{x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}

the quadratic cone

{x ∈ Rn : x1 ≥
√
x2

2 + · · ·+ x2
n}

and the semidefinite cone

{X ∈ Sn : 〈y,Xy〉 ≥ 0, ∀y ∈ Rn}

are all self-dual convex cones



Infinite-dimensional convex cones

Given a compact set X ⊂ Rn, the set of positive (non-negative)

continuous functions on X is an infinite-dimensional convex cone

C(X)+ := {f ∈ C(X) : f(x) ≥ 0, ∀x ∈ X}.

By a Riesz representation theorem, its dual is the cone of Borel

regular positive measures (for short, measures)

C(X)′+ := {µ ∈ C(X)′ : µ(A) ≥ 0, ∀A ∈ B(X)}

and the duality pairing is integration

〈f, µ〉 :=
∫
X
f(x)dµ(x)

for all f ∈ C(X), µ ∈ C(X)′



Challenging finite-dimensional convex cones

The set of polynomials of degree at most d which are positive
on compact X ⊂ Rn is a finite-dimensional convex cone

P (X)d := {p ∈ R[x]d : p(x) =
∑
a
pax

a ≥ 0, ∀x ∈ X} ⊂ R(n+d
n )

called the cone of positive polynomials

By the Riesz-Haviland theorem, its dual is the cone of moments
of degree at most d of measures on X

P (X)′d := {y ∈ R(n+d
n ) : ya =

∫
X
xadµ(x), µ ∈ C(X)′+}

and the duality pairing is integration

〈p, y〉 :=
∑
a
paya =

∑
a
pa

∫
X
xadµ(x) =

∫
X

∑
a
pax

adµ(x) =
∫
X
p(x)dµ(x)

for all p ∈ P (X)d, y ∈ P (X)′d



Conic optimization



Conic primal

Conic optimization consists of minimizing a linear function on an

affine section of a convex cone

p∗ = infx 〈c, x〉
s.t. Ax = b

x ∈ K

for given A : V → U ′, b ∈ U ′, c ∈ V ′ - let us call this the primal

When K is a linear, quadratic resp. semidefinite cone, this is

called linear, quadratic resp. semidefinite programming, and

the feasibility region (the affine section of the cone) is called a

polyhedron, conic resp. spectrahedron

Spectrahedra are defined by linear matrix inequalities, LMIs





Conic duality

Given a conic problem

p∗ = infx 〈c, x〉
s.t. Ax = b

x ∈ K
with data A : V → U ′, b ∈ U ′, c ∈ V ′, define the Lagrangian

`(x, y, z) := 〈c, x〉 − 〈Ax− b, y〉 − 〈z, x〉
where x ∈ V are the primal variables, and y ∈ U , z ∈ V ′ are
Lagrange multipliers, or dual variables

Define the dual Lagrange function

d(y, z) := inf
x∈V

`(x, y, z)

and observe that p∗ ≥ d(y, z) for all y ∈ U , z ∈ K′



Conic dual

The tightest lower bound on p∗ is obtained with the dual

d∗ = supy,z d(y, z)
s.t. z ∈ K′

Rearrange the dual function as follows

d(y, z) = inf
x∈V

(〈c, x〉−〈Ax−b, y〉−〈z, x〉) = 〈b, y〉+ inf
x∈V
〈c−A′y−z, x〉

(where A′ : U → V ′ is the adjoint map to A) and observe that it

is finite only if z = c−A′y so that the dual can be formulated as

a conic problem

d∗ = supy 〈b, y〉
s.t. c−A′y ∈ K′



Primal and dual conic problems

To summarize, these two problems are in duality

p∗ = infx 〈c, x〉
s.t. Ax = b

x ∈ K

d∗ = supy 〈b, y〉
s.t. z = c−A′y

z ∈ K′

Weak duality p∗ ≥ d∗ always holds, and strong duality also called
no duality gap p∗ = d∗ holds under some assumptions

If x∗ is primal optimal and y∗ is dual optimal, then x∗ and
z∗ := c−A′y∗ are complementary: 〈x∗, z∗〉 = 0

If there is no duality gap then primal and dual optimality holds if
and only if complementarity holds - one can then expect a good
behavior of numerical optimization algorithms



Polynomial optimization and the Lasserre hierarchy



POP (Polynomial Optimization Problem)

Given polynomials p, g1, . . . gm ∈ R[x] of the indeterminate x ∈ Rn,

consider the nonlinear nonconvex global optimization problem

v∗ = minx p(x)
s.t. x ∈ X

defined on the bounded basic semialgebraic set

X := {x ∈ Rn : g1(x) ≥ 0, . . . gm(x) ≥ 0}



Step 1 - Linear reformulation



Primal linear reformulation

Instead of the POP

v∗ = minx p(x)
s.t. x ∈ X

consider the linear problem (LP)

p∗ = infµ 〈p, µ〉
s.t. 〈1, µ〉 = 1

µ ∈ C(X)′+

Exercise 1.1: Prove that v∗ = p∗ and that the LP has an

optimal solution equal to the Dirac measure at any optimal

solution of the POP



Dual linear reformulation

Dual to the primal LP

p∗ = infµ 〈p, µ〉
s.t. 〈1, µ〉 = 1

µ ∈ C(X)′+
is the LP

d∗ = supv∈R v
s.t. p− v ∈ C(X)+

Exercise 1.2: Derive the dual LP from the primal LP using

convex duality. Prove that strong duality holds i.e. p∗ = d∗.
Give a graphical interpretation to the dual LP



Step 2 - Convex hierarchy



Moments and positive polynomials

POP is replaced with a primal and a dual LP

p∗ = infµ 〈p, µ〉
s.t. 〈1, µ〉 = 1

µ ∈ C(X)′+

d∗ = supv∈R v
s.t. p− v ∈ C(X)+

or equivalently

p∗ = infy 〈p, y〉
s.t. 〈1, y〉 = 1

y ∈ P (X)′d

d∗ = supv∈R v
s.t. p− v ∈ P (X)d

since p is a degree d polynomial



Approximating positive polynomials

The cone of positive polynomials

P (X)d := {p ∈ R[x]d : p(x) ≥ 0, ∀x ∈ X}
on the bounded basic semialgebraic set

X := {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}
is generally intractable, so we will approximate it

Denoting g0(x) := 1 and enforcing (without loss of generality)
g1(x) := R2 −

∑n
i=1 x

2
i for R large enough, consider for r ≥ d

Q(X)d,r := {q ∈ R[x]d : q =
m∑
k=0

skgk, sk ∈ Σ, skqk ∈ R[x]r}

where Σ denotes polynomial sums of squares (SOS), and observe
that it is an inner approximation: Q(X)d,r ⊂ P (X)d



Polynomial SOS

Observe that (the truncated quadratic module)

Q(X)d,r := {q ∈ R[x]d : q =
m∑
k=0

skgk, sk ∈ Σ, skgk ∈ R[x]r}

is a projection of the SOS cone

Observe also that by construction

Q(X)d,r ⊂ Q(X)d,r+1

Exercise 1.3: Prove that deciding whether a polynomial is

SOS can be reduced to semidefinite programming



Moment relaxations

Hence we have a hierarchy of tractable inner approximations

for the cone of positive polynomials

Q(X)d,r ⊂ Q(X)d,r+1 ⊂ P (X)d

Using convex duality, we also have a hierarchy of tractable outer

approximations, or relaxations, for the cone of moments

Q(X)′d,r ⊃ Q(X)′d,r+1 ⊃ P (X)′d

Elements of Q(X)′d,r are sometimes called pseudo-moments

Exercise 1.4: Describe explicitly the moment cone relaxation

Q(X)′d,r as the projection of a spectrahedron



Moment-SOS hierarchy

Replace the intractable problems

p∗ = infy 〈p, y〉
s.t. 〈1, y〉 = 1

y ∈ P (X)′d

d∗ = supv∈R v
s.t. p− v ∈ P (X)d

with the hierarchy of tractable problems for r = d, d+ 1, . . .

p∗r = infy 〈p, y〉
s.t. 〈1, y〉 = 1

y ∈ Q(X)′d,r

d∗r = supv∈R v
s.t. p− v ∈ Q(X)d,r

Exercise 1.5: Prove that strong duality holds: v∗r := p∗r = d∗r



Step 3 - Convergence



Convergence

Integer r is called the relaxation order

Since Q(X)d,r ⊂ Q(X)d,r+1 ⊂ P (X)d, we have a monotone non-

decreasing sequence of lower bounds on the POP value:

v∗r ≤ v∗r+1 ≤ v
∗

Theorem (Putinar 1993): Q(X)d,∞ = P (X)d

Theorem (Lasserre 2001): v∗∞ = v∗

The moment-SOS hierarchy is known as the Lasserre hierarchy



Finite convergence

Theorem (Nie 2014): Generically ∃r <∞ such that v∗r = v∗

In other words, a vanishing small random perturbation of the

input data of a given POP ensures finite convergence of the

Lasserre hierarchy

We also have sufficient linear algebra conditions to ensure finite

convergence, certify global optimality and extract minimizers



Software

The moment-SOS hierarchy is implemented in the GloptiPoly

package for Matlab (2002)

Conic relaxations are solved by a dedicated solver, e.g. SeDuMi,

MOSEK or PENSDP

Julia packages are currently being developed, e.g. MomentOpt

by Tillmann Weisser or MomentTools by Lorenzo Baldi and

Bernard Mourrain



Summary



This first lecture on polynomial optimization illustrates the main
steps of the moment-SOS aka Lasserre hierarchy

Given a nonlinear nonconvex problem:

1. Reformulate it as a linear problem (at the price of enlarging
or changing the space of solutions)

2. Solve approximately the linear problem with a hierarchy of
tractable convex relaxations (of increasing size)

3. Ensure convergence: either the original problem is solved
at a finite relaxation size, or its solution is approximated with
increasing quality

At each step, conic duality is an essential ingredient



Teaser

In the next lectures we will bring some dynamics to polynomial

optimization and the Lasserre hierarchy

First we will approximate the maximal positively invariant set for

a discrete dynamical system

Then we will approximate the value function for the optimal

control of ordinary differential equations

A key technical ingredient will be occupation measures and

approximation of their support with polynomial sublevel sets


