Introduction to Christoffel-Darboux kernels for polynomial optimization

EDOUARD PAUWELS

POEMA Online Workshop

June 2020

Outline

1. CD kernel captures measure theoretic properties: univariate case

2. Quantitative asymptotics

3. The singular case

Pure point part of a measure

Exercise: Let μ be a compactly supported Borel probability measure on \mathbb{R}^p and define Λ^μ_d , with its variational form. Show that

$$\lim_{d\to\infty} \Lambda_d^{\mu}(x_0) = \mu(\{x_0\}),$$

for all x_0 in \mathbb{R}^p .

Typical value

Exercise: Let μ be a compactly supported absolutely continuous probability measure on \mathbb{R}^p . Let Z be a random variable with distribution μ , show that

$$\mathbb{E}_{Z \sim \mu} \left[(\Lambda_d^{\mu}(Z))^{-1} \right] = \begin{pmatrix} d + p \\ p \end{pmatrix} \sim d^p.$$

Asymptotics for the Christoffel function: sublinear on the support

Maté, Nevai and Totik, (1991): p=1 and $d\mu=f$ on [-1,1] and 0 elsewhere, f>0 continuous. For almost all x in [-1,1]

$$\lim_{d\to\infty} \Lambda_d^{\mu}(x)d = \pi f(x)\sqrt{1-x^2}$$

Asymptotics for the Christoffel function: linear outside the support

Stahl and Totik, (1992): p=1 and $d\mu=f$ on [-1,1] and 0 elsewhere, f>0, for all $x\not\in [-1,1]$,

$$\lim_{d\to\infty} \Lambda_d^{\mu}(x)^{\frac{1}{2d}} < 1$$

In a nutshel

Exponential growth dichotomy: Growth of the CD kernel is

- At most polynomial in the degree *d* in the interior of the support.
- Exponential in the degree *d* outside the support.

Asymptotics after rescaling: involves the product of a density term and a term which is specific to the support.

Generalizations:

- In dimension 1 to more complex measures (Totik).
- In higher dimensions and non euclidean settings were recently described in connection with pluripotential theory (Bloom, Berman, Boucksom, Nystrom, Shiffman)

Outline

1. CD kernel captures measure theoretic properties: univariate case

2. Quantitative asymptotics

3. The singular case

Explicit construction: the cube

Legendre Polynomials: $P_0(x) = 0$, $P_1(x) = x$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

 $\max_{x \in [-1,1]} P_n(x) = 1.$

Orthogonality:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}.$$

Lebesgue measure on the cube: orthogonal polynomials given by

$$Q_{\alpha}(\mathbf{x}) = \prod_{i=1}^{p} \sqrt{\alpha_i + \frac{1}{2}} P_{\alpha_i}(x_i), \qquad \alpha \in \mathbb{N}_+^p, \quad |\alpha| < d$$

Let λ_C be the restriction of Lebesgue measure to the unit cube $C = [-1,1]^p$, then

$$\sup_{\mathbf{x}\in C} K_d^{\lambda_C}(\mathbf{x},\mathbf{x}) \leq \sum_{|\alpha|\leq d} \prod_{i=1}^p \left(\alpha_i + \frac{1}{2}\right) = O(d^{2p})$$

The unit euclidean ball (Bos, Xu)

 ω_p is the area of the *p* dimensional unit sphere in \mathbb{R}^{p+1} .

Lebesgue measure on the ball: Let λ_B be the restriction of Lebesgue measure to the unit Euclidean ball $B\subset\mathbb{R}^{p}$. We have

$$K_d^{\lambda_B}(0,0) \le \frac{s(d)}{\omega_p} \frac{(d+p+1)(d+p+2)(2d+p+6)}{(d+1)(d+2)(d+3)} = O(d^p)
K_d^{\lambda_B}(\mathbf{x},\mathbf{x}) = 2\binom{p+d+1}{d} - \binom{p+d}{d} = O(d^{p+1}), \qquad \|\mathbf{x}\| = 1.$$

Let w be a positive density on the unit ball $B \subset \mathbb{R}^p$, Lipschitz and symmetric, and μ the corresponding measure then locally uniformly on compact subsets in $\operatorname{int}(B)$

$$\lim_{d\to\infty} s(d)\Lambda_d^{\mu}(x) = w(x)\frac{\omega_p}{2}\sqrt{1-\|x\|^2}.$$

Smooth boundary

Exercise: Show that if $\mu(A) \ge \nu(A)$ for all measurable set A, then for all d, $K_d^{\mu} \le K_d^{\nu}$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^p$ have non empty interior. Then for all $\mathbf{x} \in \mathrm{int}(S)$,

$$K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^p)$$

If in addition the boundary of $S \subset \mathbb{R}^p$ is a smooth embedded hypersurface in \mathbb{R}^p . Then

$$\sup_{\mathbf{x}\in S} \mathcal{K}_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^{p+1}).$$

Tubular neighborhood theorem: There exists r > 0 such that for all $\mathbf{x} \in S$, there is a ball of radius r, $B_r \subset S$ such that $x \subset B_r$.

Exponential lower bounds

Let $S \subset \mathbb{R}^p$ be compact and μ be a probability measure supported on S. Then for all \mathbf{x} with $\mathrm{dist}(\mathbf{x},S) \geq \delta > 0$, and $d \in \mathbb{N}$

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{x}) \geq 2^{rac{\delta d}{\delta + \mathrm{diam}(S)} - 3}.$$

Exponential lower bounds: Needle polynomial

Kroó's needle polynomial, for any $\delta > 0$, $d \in \mathbb{N}^*$, $\exists Q \in \mathbb{R}_{2d}[X]$

$$Q(0) = 1, \qquad |Q(\mathbf{x})| \le 1 \text{ if } \|\mathbf{x}\| \le 1, \qquad |Q(\mathbf{x})| \le 2^{1-\delta d} \text{ if } \delta \le \|\mathbf{x}\| \le 1.$$

Example for $\delta = 0.2$ and d = 20, 30, 40.

Exponential separation of the support

 μ : Lebesgue restricted to $S \subset \mathbb{R}^p$, compact, non-empty interior.

Outline

1. CD kernel captures measure theoretic properties: univariate case

2. Quantitative asymptotics

3. The singular case

The singular case

 μ : Borel probability measure in \mathbb{R}^p , compact support S, absolutely continuous. $\mathbb{R}_d[X]$: p-variate polynomials of degree at most d (of dimension $s(d) = \binom{p+d}{d}$).

$$(P,Q) \qquad \mapsto \qquad \langle\!\langle P,Q \rangle\!\rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X]$.a positive semidefinite bilinear form on $\mathbb{R}_d[X]$.

Specificity of the singular case

 μ : Borel probability measure in \mathbb{R}^p , asbolutely continuous, compact support: S. $\mathbb{R}_d[X]$: p-variate polynomials of degree at most d (of dimension $s(d) = \binom{p+d}{d}$).

Moment based computation

- Let $\{P_i\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_d[X]$,
- $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.
- $M_{\mu,d} = \int \mathbf{v}_d \mathbf{v}_d^T d\mu \in \mathbb{R}^{s(d) \times s(d)}$

Then, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, $K_d^{\mu}(\mathbf{x}, \mathbf{y}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu, d}^{-1} \mathbf{v}_d(\mathbf{y}) \frac{\mathbf{v}_d(\mathbf{x})^T M_{\mu, d}^{-1} \mathbf{v}_d(\mathbf{y})}{\mathbf{v}_d(\mathbf{x})^T M_{\mu, d}^{-1} \mathbf{v}_d(\mathbf{y})}$

Let $P \in \mathbb{R}_d[X]$ such that $P(\mathbf{x}) = \sum_{i=1}^{s(d)} \mathbf{p}_i P_i(\mathbf{x})$. We have

$$\int P^2 d\mu = \mathbf{p}^T M_{\mu,d} \mathbf{p}.$$

If P vanishes on S, then $\mathbf{p} \in \ker(M_{\mu,d})$, The moment matrix is singular. Morally, the CD kernel should be infinite

Christoffel function to the rescue

 μ : Borel probability measure in \mathbb{R}^p , asbolutely continuous, compact support: S. $\mathbb{R}_d[X]$: p-variate polynomials of degree at most d (of dimension $s(d) = \binom{p+d}{d}$).

Variational formulation: for all $z \in \mathbb{R}^p$

$$\frac{1}{K_d^{\mu}(\mathbf{z},\mathbf{z})} = \Lambda_d^{\mu}(\mathbf{z}) = \min_{P \in \mathbb{R}_d[X]} \, \left\{ \int P^2 d\mu : \quad P(\mathbf{z}) \, = \, 1 \right\}.$$

$$\Lambda_d^\mu(\mathbf{z}) = \min_{P \in \mathbb{R}_d[X]} \, \left\{ \int P^2 d\mu : \quad P(\mathbf{z}) \, = \, 1
ight\}.$$

Given $\mathbf{z} \in \mathbb{R}^p$, such that there exists $P \in \mathbb{R}_d[X]$ such that

- $P(z) \neq 0$
- P vanishes on S.

Then $\Lambda_d^{\mu}(\mathbf{z}) = 0$.

Getting the CD kernel back (and computation from moments)

 μ : Borel probability measure in \mathbb{R}^p , compact support: S. $\mathbb{R}_d[X]$: p-variate polynomials of degree at most d (of dimension $s(d) = \binom{p+d}{d}$). V denotes the Zariski closure of S (smallest algebraic set containing S).

For d large enough, $V=\{\mathbf{z}\in\mathbb{R}^{p}, \Lambda_{d}^{\mu}(\mathbf{z})>0\}.$

Polynomials on $V: L^2_{\mu,d} = \mathbb{R}_d[X] / \{P \in \mathbb{R}_d[X], P \text{ vanishes on } V\}.$

RKHS: $(L^2_{\mu,d}, \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\mu})$ is a Hilbert space of functions on V. K^{μ}_d is its reproducing kernel (defined on V).

For any $\mathbf{x} \in V$ and $P \in L^2_{\mu,d}$, $P(\mathbf{x}) = \int P(\mathbf{y}) K^{\mu}_d(\mathbf{x}, \mathbf{y}) d\mu(\mathbf{y})$.

Relation with Christoffel function: $\Lambda_d^{\mu}(z)K_d^{\mu}(z,z)=1$, for $z\in V$.

Pseudo inverse computation: let \mathbf{v}_d be any basis of $\mathbb{R}_d[X]$, $M_{\mu,d}$ moment matrix:

$$\begin{split} \forall \mathbf{x}, \mathbf{y} \in V & \quad \mathcal{K}_d^{\mu}(\mathbf{x}, \mathbf{y}) = \mathbf{v}_d(\mathbf{x}) M_{\mu, d}^{\dagger} \mathbf{v}_d(\mathbf{y}). \\ \forall \mathbf{z} \in \mathbb{R}^p & \quad \Lambda_d^{\mu}(\mathbf{z}) = \left\{ \begin{array}{ll} 0 & \text{if } \mathrm{proj}_{\ker(M_{\mu, d})}(\mathbf{v}_d(\mathbf{z})) \neq 0 \\ \left(\mathbf{v}_d(\mathbf{z}) M_{\mu, d}^{\dagger} \mathbf{v}_d(\mathbf{z})\right)^{-1} & \text{otherwise}. \end{array} \right. \end{split}$$