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1 References

The lecture follows closely [8], where all the proofs are detailed, in the case of controlled
dynamical systems, both in continuous-time and discrete-time. Many of the technical argu-
ments are adaptations of ideas proposed previously in [6] for approximating the region of
attraction of controlled ordinary differential equations. In turn, the results in [6] can be seen
as an adaptation to dynamical systems of the results of [7] dealing with approximation of
the volume (and other moments) of a semi-algebraic sets. For further developments see [14].

The technical background on push-forward measures, Koopman and Frobenius-Perron op-
erators for dynamical systems is covered in [12]. In particular, the example of push-forward
measure for the logistic map is described in [12, Section 1.2].

The moment-SOS hierarchy was applied in [5] for computing (moments of) invariant mea-
sures (fixed points of the Frobenius-Perron operator) of one-dimensional dynamical systems,
in particular for the logistic map. See [10, 13] for a broader perspective.

2 Exercises

2.1 Exercise 2.1

2.1.1 Statement

Consider the logistic map
f(x) = 4x(1− x)
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on
X := [0, 1].

a. Given µ(dx) = m0(x)dx, derive analytically f#µ.

b. Given µ(dx) = I[0,1](x)dx compute f#µ and f ◦ f#µ.

c. Prove that µ(dx) = dx/(π
√
x(1− x)) is invariant.

d. Prove that µ(dx) = δ3/4(dx) is invariant.

2.1.2 Solution

a. By definition
f#(A) = µ ◦ f−1(A)

where f−1(A) := {x ∈ X : f(x) ∈ A}. If A = [0, x] ⊂ X we can check easily that

f−1([0, x]) = [0,
1

2
− 1

2

√
1− x] ∪ [

1

2
+

1

2

√
1− x, 1].

Therefore

f#µ([0, x]) =

∫ x

0

f#µ(dy) =

∫
f−1([0,x])

µ(dy)

and ∫ x

0

m1(y)dy =

∫
f−1([0,x])

m0(y)dy

if µ resp. f#µ have density m0 resp. m1 with respect to the Lebesgue measure. Differenti-
ating with respect to x yields

m1(x) =
d

dx

∫
f−1([0,x])

m0(y)dy

=
d

dx

∫ 1
2
− 1

2

√
1−x

0

m0(y)dy +
d

dx

∫ 1

1
2
+ 1

2

√
1−x

m0(y)dy

= 1
4
√
1−x

(
m0(

1
2
− 1

2

√
1− x) +m0(

1
2

+ 1
2

√
1− x)

)
.

b. From the above formula we get

f#I[0,1](x)dx =
dx

2
√

1− x

and

(f ◦ f)#I[0,1](x)dx = f#
dx

2
√

1− x
=

(
1√

1 +
√

1− x
+

1√
1−
√

1− x

) √
2dx

8
√

1− x
.

c. This follows readily from the above formula by replacing m0 and m1 with (π
√

1− x)−1.
Probability measures µ satisfying f#µ = µ are called invariant measures.
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d. The identity f#µ = µ also writes 〈v, f#µ〉 = 〈v(f), µ〉 = 〈v, µ〉 for all test functions
v ∈ C(X). In particular if µ = δx this yields v(f(x)) = v(x). It can be checked readily that
x = 3/4 satisfies f(x) = x and hence that δ3/4 is an invariant measure.

Note also that every finite length orbit (x1, x2 = f(x1), . . . , xN = f(xN−1), x1 = f(xN))
in X yields an invariant measure µ = 1

N

∑
k=1 δxk since 〈v(f), µ〉 = 1

N

∑N
k=1 v(f(xk)) =

1
N

(
∑N−1

k=1 v(xk+1) + v(x1)) = 〈v, µ〉 for all v ∈ C(X).

2.2 Exercise 2.2

2.2.1 Statement

Consider the LP
p∗ = sup 〈1, µ0〉

s.t. µ = µ0 + αf#µ
µ0 + µ̂0 = λX

where λX is the Lebesgue measure on X and the optimization variables are µ, µ0, µ̂0 all in
C(X)′+.

Prove that the supremum is attained by µ∗0 = λXI
and hence p∗ = volXI .

2.2.2 Solution

For any initial measure µ0 with µ0 ≤ λX , i.e. with density less than one on X, and with
spt µ0 ⊂ XI , there exists an occupation measure µ solving the Liouville equation µ =
µ0 + αf#µ. One such measure is µ0 = λXI

. Together with the slack measure µ̂0 = λX\XI
,

the triplet (µ, µ0, µ̂0) is feasible for the LP, and hence p∗ ≥ 〈1, µ0〉 = volXI .

We have seen also that for any pair of measures (µ, µ0) satisfying the Liouville equation with
spt µ and spt µ0 in X, it holds spt µ0 ⊂ XI . This proves that p∗ ≤ volXI .

2.3 Exercise 2.3

2.3.1 Statement

Derive the dual LP

d∗ = inf 〈w, λX〉
s.t. (v − αv ◦ f, w − v − 1, w) ∈ C(X)3+.

by convex duality. Prove that there is no duality gap.
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2.3.2 Solution

Let us start with the primal in minimization form

−p∗ = inf 〈−1, µ0〉
s.t. µ = µ0 + αf#µ

µ0 + µ̂0 = λX
(µ, µ0, µ̂0) ∈ (C(X)′+)3

and construct the Lagrangian

`(µ, µ0, µ̂0, v, w) := 〈−1, µ0〉+ 〈v, µ− µ0 − αf#µ〉+ 〈w, µ0 + µ̂0 − λX〉

where the dual variable v ∈ C(X) corresponds to the Liouville equation, and the dual variable
w ∈ C(X) corresponds to the Lebesgue domination equation. Rearrange the Lagrangian

`(µ, µ0, µ̂0, v, w) = 〈−w, λX〉+ 〈v − αv ◦ f, µ〉+ 〈−1− v + w, µ0〉+ 〈w, µ̂0〉

such that the dual Lagrange function can be expressed as

d(v, w) := inf
µ,µ0,µ̂0

`(µ, µ0, µ̂0, v, w) = 〈−w, λX〉

provided (v−αv ◦f,−1−v+w,w) ∈ C(X)3+. Maximization of the Lagrange function yields
the dual LP

−d∗ = sup 〈w,−λX〉
s.t. (v − αv ◦ f, w − v − 1, w) ∈ C(X)3+.

To prove that there is no duality gap, we use [2, Theorem IV.7.2] and the fact that the feasible
set of the primal LP is nonempty and bounded in the metric inducing the weak-star topology
on measures. To see non-emptiness, notice that the vector of measures (µ, µ0, µ̂0) = (0, 0, λX)
is trivially feasible. To see the boundedness, it suffices to integrate the equality constraints
of the primal LP on the whole domain X. This gives µ0(X) + µ̂0(X) = λ(X) < ∞ and
µ(X) = µ0(X)/(1− α) <∞ since α ∈ (0, 1) and all the measures are non-negative.

2.4 Exercise 2.4

2.4.1 Statement

By replacing C(X)+ with Q(X)r,r we get a monotone converging sequence of upper bounds

p∗r = d∗r ≥ p∗r+1 = d∗r+1 ≥ p∗∞ = d∗∞ = volXI .

Prove it with the Stone-Weierstrass Theorem.

2.4.2 Solution

The absence of duality gap in the moment-SOS hierarchy, i.e. p∗r = d∗r for all r, follows from
the same primal boundedness arguments as in Exercise 2.3. These are upper bounds since
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the dual quadratic module Q(X)′r,r is an outer approximation of the moment cone P (X)′r
and the objective function is maximized in the primal moment relaxation. Monotonicity
of the sequence of bounds follows from the embedded structure of the truncated quadratic
modules, i.e. Q(X)r,r ⊂ Q(X)r+1,r+1. Convergence of the bounds follows from the Stone-
Weierstrass Theorem [1, A7.5] which asserts that a continuous function on a compact set
X ⊂ Rn can be approximated arbitrarily well (in the strong topology of the supremum
norm) by polynomials. In turn, these polynomials can be approximated arbitrarily well with
SOS (and hence semidefinite programming) by Putinar’s Positivstellensatz, provided the
quadratic module is Archmedian, as already discussed many times in this course.

2.5 Exercise 2.5

2.5.1 Statement

In the dual we obtain a sequence of polynomials vr, wr in R[x]r such that

XIr := {x ∈ X : vr(x) ≥ 0} ⊃ XI

and
lim
r→∞

vol(XIr \XI) = 0.

Prove it by showing that wr → IXI
in L1(X).

2.5.2 Solution

We know from the constraints of the dual SOS problem that wr ≥ IXI
. Since the sequence

of values of the relaxations ‖wr‖L1(X) =
∫
X
wr(x)dx converges from above to

∫
X
IXI

(x)dx =
vol XI , it follows that wr converges in L1(X) norm. We know that XIr ⊃ XI and since
wr ≥ IXIr

≥ IXI
we also have {x ∈ X : wr(x) ≥ 1} ⊃ XIr ⊃ XI . Since wr converges

to IXI
in L1(X) norm, it holds λ(XI) = limr→∞

∫
X
wr(x)dx ≥ limr→∞

∫
X
IXIr

(x)dx =
limr→∞ λ(XIr) ≥ limr→∞ λ(∩rk=1XIk) = λ(∩∞k=1XIk). Since XI ⊂ XIr for all r we have
limr→∞ λ(XIr) = λ(XI) and λ(∩∞k=1XIk) = λ(XI).

3 Questions and answers

Q. Are the eigenvectors of Frobenius-Perron operator known ?

A. They can be approximated numerically with the moment-SOS hierarchy, see [10, Section
8] and references therein. The study of the eigenstructure of the Frobenius-Perron operator
(and its adjoint the Koopman operator) is still a vast subject of research. For references on
the numerics of the Koopman operator in dynamical systems and optimization see e.g. [3]
and more recently [11] in the context of data-driven methods.

Q. The primal and dual convex problems depend on the discount rate α. This cannot
be optimized, because it multiplies the unknown measures/continuous functions. Is α to
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be chosen arbitrarily? If so, does the feasibility of these convex problems depend on the
particular value of α?

A. The theoretical convergence results do not depend on the discount rate α. The numerics
of solving the optimization problems in the moment-SOS hierarchy will indeed depend on
the discount rate, but in a way which is difficult to understand. Generally, a value of α close
to 1 gives satisfactory results.

Q. Anything known about the convergence rate of the bounds?

A. Our MPI set approximation method can be viewed as an extension of the volume ap-
proximation method of [7]. In this previous work, the moment-SOS hierarchy was used to
approximate as closely as desired the volume (and all the other moments) of a given semi-
algebraic set. Convergence rates for this volume approximation were studied in [9]. They
are quite pessimistic, of the order of log log 1/r where r is the relaxation order. In practice,
we observe a sublinear rate of convergence. The convergence results of [9] may be extended
to the MPI set approximation, but the essential difference is that in [7] the set to be ap-
proximated is given. The geometry of the set to be approximated plays a key role in the
convergence analysis of [9], and we know that the geometry of the MPI set can be intricate
(e.g. with a fractal boundary for the Julia sets).

Q. Can the approach be applied to approximate other “type” of sets/graph ? (partially in
the previous question answer)

A. An interesting application domain could be shape optimization. For example, Newton’s
problem of finding the 3D convex body of minimal resistance can be formulated as a linear
optimization problem where the unknown is the surface area measure of the convex body [4].
In principle the moment-SOS hierarchy can be applied to solve numerically this problem.
The graph of the body can then be recovered approximately with the Christoffel-Darboux
kernel techniques of [15].

Q. Are there any difficulties in extending the analysis to continuous-time systems, especially
in terms of convergence results?

A. The results of [8], on which this course is based, are also available in continuous-time. See
also [6] for approximations of the region of attraction of continuous-time ordinary differential
equations.

Q. What is the (dis)advantages of Lasserre hierarchy approach in finding the approximations
(or the volume) of an invariant set compared to other methods in theoretical and practical
respects?

A. We are missing comprehensive numerical comparisons with alternative techniques for set
estimation. For recent references on volume computation, see [16] and references therein.

Q. Can another outer measure (not Lebesgue; e.g., Hausdorff) be used to compute the
volume of the set XI so we can design iterative methods converging in this other measure?

A. Indeed, one can use another outer measure than λX in the primal-dual LP, as soon as we
can compute accurately all its moments. These moments must be available since they enter
explicitly in the coefficients of the moment-SOS hierarchy.
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[10] M. Korda, D. Henrion, I. Mezić. Convex computation of extremal invariant measures
of nonlinear dynamical systems and Markov processes. arXiv:1807.08956, 2018.
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