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1 Source and references

The univariate asymptotics results are found in Maté, Nevai, Totik [5] and in the book of Stahl
and Totik [7], which offers a much broarder view on the topic and illustrates the relations
with potential theory. A more general result is found in [8]. The unit cube is discussed in [9]
The multivariate results on the euclidean ball are found in works by Bos, Xu and co-authors
[1, 2, 10, I1]. The needle Polynomial was introduced by Kroo-Lubinsky [3]. The course was
inspired from content developped in [4l [6].

2 Exercises

Exercise 1 (Pseudo inverse formula).

1. Let M be a symmetric definite positive p X p matriz and u € RP, u # 0
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and that the minimum is attained at x¢ = #lffu

2. Let M be a symmetric semidefinite positive p X p matriz and u € RP, u & Im(M), show
that

min {xTMz, st. zlu= 1} =0.
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3. Let M be a symmetric semidefinite positive p X p matriz and u € RP, uw € Im(M), show
that
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where MT denotes Moore-Penrose pseudo-inverse of M.
4. Prove the pseudo inverse formula for the Christoffel-Darboux kernel in the singular case.

Exercise 2 (Bound on the cube).



1. Show that for any integers 1 <k <mn
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2. Let Ny be the number of monomials of degree exactly d in p variable, show that as d — co.
Ny =0O(dP™)
8. Show the following inequality for sums over multi indices.
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4. Deduce that as d — oo

Exercise 3 (Needle polynomial). For all d € N, T, denotes the univariate Chebyshev polynomial
of the first kind. We recall that fort > 1,

1 d —d
Tut) = 5 ((t+ N 1) + (t+ Vi~ 1) ) .
Furthermore, Ty(t) € [-1,1] fort € [-1,1], T4(1) = 1 and Ty is increasing on (1,400).
1. Sow that for all 6 > 0,

14682+ /1+02)2-1>1+26

2. Using concavity of the logarithm, deduce that for all 0 < 6 <1,

Ta(1+ %) > 29471,

3. show that for all d € N,

Ta(1 + 62 — ||=[1*)

Qrm = A

satisfies the properties of the needle polynomial

Exercise 4. Consider the set S = {(w,y) ER2,0<z<1,0<y<e V¥ a24¢y2< 1} with the
convention that (0,0) € S and du the Lebesgue measure restricted to S. Show that for any
d e N*,
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