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1 Source and references

The univariate asymptotics results are found in Maté, Nevai, Totik [5] and in the book of Stahl
and Totik [7], which offers a much broarder view on the topic and illustrates the relations
with potential theory. A more general result is found in [8]. The unit cube is discussed in [9]
The multivariate results on the euclidean ball are found in works by Bos, Xu and co-authors
[1, 2, 10, 11]. The needle Polynomial was introduced by Kroo-Lubinsky [3]. The course was
inspired from content developped in [4, 6].

2 Exercises

Exercise 1 (Pseudo inverse formula).

1. Let M be a symmetric definite positive p× p matrix and u ∈ Rp, u 6= 0

min
x∈Rp

{
xTMx, s.t. xTu = 1

}
=

1

uTM−1u
.

and that the minimum is attained at x0 = M−1u
uTM−1u

.

2. Let M be a symmetric semidefinite positive p × p matrix and u ∈ Rp, u 6∈ Im(M), show
that

min
x∈Rp

{
xTMx, s.t. xTu = 1

}
= 0.

3. Let M be a symmetric semidefinite positive p × p matrix and u ∈ Rp, u ∈ Im(M), show
that

min
x∈Rp

{
xTMx, s.t. xTu = 1

}
=

1

uTM†u
.

where M† denotes Moore-Penrose pseudo-inverse of M .

4. Prove the pseudo inverse formula for the Christoffel-Darboux kernel in the singular case.

Exercise 2 (Bound on the cube).
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1. Show that for any integers 1 ≤ k ≤ n(
n

k

)
≤
(en
k

)k
.

2. Let Nd be the number of monomials of degree exactly d in p variable, show that as d→∞.

Nd = O(dp−1)

3. Show the following inequality for sums over multi indices.

∑
|α|≤d

p∏
i=1

(
αi +

1

2

)
≤
∑
|α|≤d

( |α|+ p
2

p

)p
.

4. Deduce that as d→∞

∑
|α|≤d

p∏
i=1

(
αi +

1

2

)
= O(d2p).

Exercise 3 (Needle polynomial). For all d ∈ N, Td denotes the univariate Chebyshev polynomial
of the first kind. We recall that for t ≥ 1,

Td(t) =
1

2

((
t+
√
t2 − 1

)d
+
(
t+
√
t2 − 1

)−d)
.

Furthermore, Td(t) ∈ [−1, 1] for t ∈ [−1, 1], Td(1) = 1 and Td is increasing on (1,+∞).

1. Sow that for all δ > 0,

1 + δ2 +
√

(1 + δ2)2 − 1 ≥ 1 +
√

2δ

2. Using concavity of the logarithm, deduce that for all 0 ≤ δ ≤ 1,

Td(1 + δ2) ≥ 2δd−1,

3. show that for all d ∈ N,

Q : x 7→ Td(1 + δ2 − ‖x‖2)

Td(1 + δ2)

satisfies the properties of the needle polynomial

Exercise 4. Consider the set S =
{

(x, y) ∈ R2, 0 ≤ x ≤ 1, 0 ≤ y ≤ e−1/x, x2 + y2 ≤ 1
}

with the
convention that (0, 0) ∈ S and dµ the Lebesgue measure restricted to S. Show that for any
d ∈ N∗,

Kµ
d (0, 0) ≥ e

√
d

5
.
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