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INTRODUCTION

Let
G := {g0 := 1, g1, . . . , gm : gi ∈ R[x], i ∈ [m]}

be the set of polynomials and

G+ = {x ∈ Rn | g(x) > 0 ∀g∈G}

be the subset of Rn where polynomials in G are nonnegative.

Polynomial Optimization Problem

P : min { f (x) | x ∈ G+ }
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INTRODUCTION

Let: f ∈ R[x]
G := {g0 := 1, g1, . . . , gm : gi ∈ R[x], i ∈ [m]}
G+ = {x ∈ Rn | g(x) > 0 ∀g∈G}

P : min{ f (x) | x ∈ G+} ⇒ P : max{λ ∈ R | f − λ ∈ KG}
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INTRODUCTION

P : max{λ ∈ R | f − λ ∈ KG}

for KG- the cone of polynomials that are nonnegative over the set G+

SOS2d : max{λ ∈ R | f − λ ∈ Σ2d
G }

Σ2d
G : {p | p = s0︸︷︷︸

deg 2d+ddegG/2e

+
∑

i

gi(x)si(x)︸ ︷︷ ︸
deg 2d+ddegG/2e

} and si ∈ SoS

si ∈ SoSd ⇒ SDP of size ≈
(n+d

d

)
.
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SOS2d - TWO OPTIONS

Primal

Dual

max
λ∈R

λ

s.t. f − λ ∈ Σ2d
G

min
Ẽ: R[x](2d+degG)→R

Ẽ[f (x)]

s.t. Ẽ[1] = 1

Ẽ[gih2] > 0 ∀ i ∈ [m], h ∈ R[x]
deg(gih2) 6 2d + ddegG/2e
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SOS2d - TWO OPTIONS

Primal

Dual

max
λ∈R

λ

s.t. f − λ ∈ Σ2d
G

min
Ẽ: R[x](2d+degG)→R

Ẽ[f (x)]

s.t. Ẽ[1] = 1

Ẽ[gih2] � 0 ∀ i ∈ [m], h ∈ R[x]2d
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THE LASSERRE/SOS HIERARCHY
Consider a function µ : {0, 1}n → R.
For I ⊆ [n], xI ∈ {0, 1}n, s.t. (xI)i = 1 iff i ∈ I,

µ(xI) = Ẽ[
∏
i∈I

xi

∏
[n]\I

(1 − xi)]

µ(xI) can be thought of as an indicator variable of the solution I

SoS constraints: first type
Ẽ[1] =

∑
I⊆[n]

µ(xI) = 1.

µ(xI) is often called a pseudodistribution as it mimics an actual
distribution in some sense.

Ẽf =
∑
I∈[n]

µ(xI)f (xI)
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THE LASSERRE/SOS HIERARCHY

To each I ⊆ [n] we associate a vector Zt
I ∈ R(

n
6t).

Zt
I[J] =

{
1, if J ⊆ I, |I|, |J| 6 t
0, otherwise.

The matrix Zt
I(Z

t
I)
> is PSD −→ µ(xI)Zt

I(Z
t
I)
> is PSD when µ(xI) > 0.

SoS constraints: second type∑
I⊆[n]

µ(xI)Zt
I(Z

t
I)
> � 0.
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THE LASSERRE/SOS HIERARCHY

Denote by g`(xI) the constraint g` evaluated at the point x ∈ {0, 1}n

with (xI)i = 1⇔ i ∈ I.

For feasible points we have g(xI) > 0 −→ µ(xI)g(xI)Zt
I(Z

t
I)
> should be

PSD when µ(xI) > 0 since Zt
I(Z

t
I)
> � 0.

SoS constraints: third type∑
I⊆[n]

µ(xI)g(xI)Zt
I(Z

t
I)
> � 0.
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INTRODUCTION
0/1 Integer program

min
x∈{0,1}n

f (x)

gi(x) > 0, for i = [m]

f , gi - polynomials

Lasserre/SoS at level t

SOS2t : min
µ:2n→R

∑
I⊆[n]

f (xI)µ(xI)∑
I⊆[n]

µ(xI) = 1

∑
I⊆[n]

µ(xI)Zt+1
I (Zt+1

I )> � 0

∑
I⊆[n]

µ(xI)gi(xI)Zt
I(Z

t
I)
> � 0 for i ∈ [m]

xI =

{
1 if i ∈ I
0 otherwise

Zt
I[J] =

{
1 if J ∈ I, |J|, |I| 6 t
0 otherwise

Ẽf =
∑
I∈[n]

µ(xI)f (xI)
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SIMPLIFYING THE PSDNESS CONDITIONS
In general the PSDness is difficult to analyse

Idea: simplify by setting µk = µ(xI) for every I with |I| = k.

“Every solution of the same size gets the same value”.

SoS constraint 2. simplifies to:

∑
I⊆[n]

µ(xI)Zt
I(Z

t
I)
> =

n∑
k=0

µk

∑
I⊆[n]:|I|=k

Zt
I(Z

t
I)
>

If constraints g symmetric s.t. gk = g(xI) for every I with |I| = k, SoS
constraint 3. simplifies to

∑
I⊆[n]

µ(xI)g(xI)Zt
I(Z

t
I)
> =

n∑
k=0

µkgk

∑
I⊆[n]:|I|=k

Zt
I(Z

t
I)
>
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MAIN RESULT

Theorem
For any set of values {zk ∈ R : k = 0, ..., n}, we have

n∑
k=0

zk

∑
I⊆[n]:|I|=k

Zt
I(Z

t
I)
> � 0

if and only if
n−h∑
k=h

(
n
k

)
zkPh(k) > 0 ∀h ∈ {0, ..., t}

for every “well behaved” univariate polynomial Ph(k). In particular
1. deg(Ph) = 2t.
2. Ph(k) = 0 for k ∈ {0, . . . , h − 1} ∪ {n − h + 1, . . . , n},
3. Ph(k) > 0 for k ∈ [h − 1, . . . , n − h + 1].
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MAIN THEOREM - DISCUSSION
Symmetry in the variables µ(xI) allows us to find eigenvectors with
many repeated entries→ simplified analysis.

The derivation is mainly manipulating the quadratic form

v>

 ∑
I⊆[n]:|I|=k

Zt
I(Z

t
I)
>

 v.

We identify all possible forms of the eigenvalues of the matrix and
propose to test several candidates.

Recently, a similar result was independently obtained on the dual side
by Blekherman.
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MAIN THEOREM - RELATED RESULTS
Theorem (Blekherman)
Let f : {0, 1}n → R+ be a symmetric non-negative real-valued boolean
function and f̃ a univariate polynomial such that
f (x1, . . . , xn) = f̃ (x1 + . . . + xn). If f can be written as the sum of
squares of n-variate polynomials of degree d 6 n/2, then we can write

f̃ (z) =qd(z) + z(n − z)qd−1(z) + z(z − 1)(n − z)(n − 1 − z)qd−2(z) + . . .+
z(z − 1) · · · (z − d + 1)(n − z)(n − 1 − z) · · · (n − d + 1 − z)q0(z)

where each qt(z) is a univariate SoS polynomial with deg(qt) 6 2t.

RHS of the SoS representation of univariate polynomial f̃ can be
written as a combination of polynomials Ph and vice versa.
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MAX CUT IN THE COMPLETE GRAPH

Input: a graph G = (V, E),
Output: a set of vertices S ⊆ V such that number of edges
between S and V \ S is maximized.

f (x) =
(
‖x‖1 −

⌊n
2

⌋)(
‖x‖1 −

⌈n
2

⌉)
> 0 x ∈ {0, 1}n

The SoS rank is at least b n
2 c when n is odd (Grigoriev; Laurent).

And at most d n
2 e (Fawzi, Saunderson, Parrilo).

Used for example by Lee, Raghavendra and Steurer to derive
extension complexities for max CSPs.

Question (O’Donnell): Is there a simple proof?
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MAX CUT IN THE COMPLETE GRAPH

Consider the symmetric solution: µk = (n + 1)
(n/2

n+1

) (−1)n−k

n/2−k .

I Recall: µ feasible for SoS if

n∑
k=0

(
n
k

)
µkPh(k) > 0

where Ph is of degree 2t and Ph(n/2) > 0.

Polynomial rem. thm.: Ph(k) = (n/2 − k)Q(k) + Ph(n/2).

n∑
k=0

(
n
k

)
µkPh(k) =

n∑
k=0

(
n
k

)
µk(n/2 − k)Q(k)︸ ︷︷ ︸

=0

+Ph(n/2)
n∑

k=0

(
n
k

)
µk︸ ︷︷ ︸

=1

> 0
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BPOP

BPOP: minx∈{0,1}n f (x) where deg(f ) = r.

For r = 2:

At least b n
2 c levels required for exact solution (Laurent).

- Follows by showing that the SoS relaxation of the function

f (x) =
(
‖x‖1 −

⌊n
2

⌋)(
‖x‖1 −

⌈n
2

⌉)
has a strictly negative minimum over {0, 1}n.

At most d n
2 e levels are sufficient (Fawzi, Saunderson, Parrilo).

For r > 2:

At most d n+r−1
2 e levels suffice (Sakaue, Takeda, Kim and Ito).

- Sakaue et al. - numerical evidence that their bound is tight.
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OUR LOWER BOUND

Fix n odd, let r = 2d and consider the problem

min
x∈{0,1}n

fd(x) =
(
‖x‖1 −

⌊n
2

⌋
+ d − 1

)2d

E.g. for n = 11
- f1(x) = (‖x‖1 − 5)(‖x‖1 − 6)
- f2(x) = (‖x‖1 − 4)(‖x‖1 − 5)(‖x‖1 − 6)(‖x‖1 − 7)
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EXAMPLE: f2(x) WITH n = 11
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OUR LOWER BOUND

Fix n odd, let r = 2d and consider the problem

min
x∈{0,1}n

fd(x) =
(
‖x‖1 −

⌊n
2

⌋
+ d − 1

)2d

E.g. for n = 11
- f1(x) = (‖x‖1 − 5)(‖x‖1 − 6)
- f2(x) = (‖x‖1 − 4)(‖x‖1 − 5)(‖x‖1 − 6)(‖x‖1 − 7)

Clearly the minimum of fd over {0, 1}n is 0.

We show: the minimum of the SoS relaxation of fd is strictly
negative at level d n+2d−1

2 e− 1.
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OUR LOWER BOUND - SKETCH OF PROOF

(Goal:)
the min of the SoS of fd is strictly negative at level d n+2d−1

2 e− 1.

1. Find a candidate solution µ to the SoS relaxation.
- fd(x) depends only on ‖x‖1 → choose µk that depends only on
|I| = k.

2. Show that
∑n

k=0 µk
∑

I⊆[n],
|I|=k

ZIZ>I � 0 (feasibility).

- µk symmetric→ application of the symmetry theorem.

3. Show that
∑n

k=0

(n
k

)
fd(xk)µk < 0 (objective strictly negative).

- µ symmetric→ reduces to a certain hypergeometric sum that can
be computed in closed form using standard techniques.
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SET COVER

SC : min
∑
i∈[n]

xi s.t.
∑

i∈[n]\{j}

xi > 1 ∀j ∈ [n], x ∈ {0, 1}n

SA - requires at least n − 3 (Bienstock & Zuckerberg)
i.e. to refute the inequality

∑n
i=1 xi < 2

Bienstock & Zuckerberg conjecture: SoS needs at least n/4.

Our result:
log1−ε n levels of the SoS does not refute

∑n
i=1 xi 6 1 + o(1).

Alternatively: SoS has an integrality gap of 2 − o(1) for
MIN KNAPSACK strengthened with cover inequalities.
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DETECTING EMPTY INTEGRAL HULL

Consider the system

EIH :
∑
r∈R

xr +
∑

r∈[n]\R

(1 − xr) >
1
B

for all R ⊆ [n], x ∈ {0, 1}n

Theorem (K, Leppänen, Mastrolilli’15)
For B > 2n+1, SoS requires n levels.

What about other values of B?
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EMPTY INTEGRAL HULL

EIH :
∑
r∈R

xr +
∑

r∈[n]\R

(1 − xr) >
1
B

for all R ⊆ [n], x ∈ {0, 1}n

For B = 2:

- Lovász-Schrijver - rank n (Goemans, Tunçel),
- Lovász-Schrijver with Chvátal or Gomory mixed integer cuts -

rank n (Cook, Dash; Cornuéjols, Li),
- Sherali-Adams - rank n (Laurent),

Laurent conjecture: the SoS rank is n − 1

Our result: Ω(
√

n) 6 SoS rank 6 n −Ω(n1/3).
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DETECTING EIH - PROOF SKETCH

By symmetry, it is enough to consider the solution µ(xI) =
1
2n .

By symmetry, it is enough to consider the constraint for R = [n]:

1
2n

n−h∑
k=h

(
n
k

)(
k −

1
2

)
Ph(k) > 0 ∀h ∈ {0, ..., t} (1)

LB: Ω(
√

n) 6 SoS rank.

We express the generic polynomial Ph in root form and argue that if
the level is small (1) is always satisfied.

UB: SoS rank 6 n −Ω(n1/3)

We give one polynomial P0(k) =
∏t

i=1(n − k − i + 1)2 for which we
show that (1) is never satisfied when the level is large.
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SOS2d - TWO OPTIONS

Primal

Dual

max
λ∈R

λ

s.t. f − λ ∈ Σ2d
G

min
Ẽ: R[x](2d+degG)→R

Ẽ[f (x)]

s.t. Ẽ[1] = 1

Ẽ[gih2] > 0 ∀ i ∈ [m], h ∈ R[x]2d
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SOS2d - TWO OPTIONS

Primal

Dual

max
λ∈R

λ

s.t. f − λ ∈ Σ2d
G

min
Ẽ: R[x](2d+degG)→R

Ẽ[f (x)]

s.t. Ẽ[1] = 1

Ẽ[gih2] > 0 ∀ i ∈ [m], h ∈ R[x]2d
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DIFFICULTIES WITH PROVING IG

PSDness of very large metrices

Mg0(·), . . . , Mgm(·) ∈ R(
n+d

d )×(n+d
d )

For a given instance one has to provide

solution vector Ẽ ∈ R(
n+d

d )

such that:
- attains superoptimal objective value: Ẽ[f (x)] < minx∈G+

f (x)
- Mg0(x), . . . , Mgm(x) � 0.
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SOS RANK

SoS has rank d for EIH if there exist s0 and sI

EIH :
∑
r∈R

xr +
∑

r∈[n]\R

(1 − xr) >
1
B

for all R ⊆ [n], x ∈ {0, 1}n

−1 = s0︸︷︷︸
deg 2d + 2

+
∑
I⊆[n]

sI(x)︸︷︷︸
deg 2d

 ∑
i∈[n]\I

xi +
∑
j∈I

(1 − xj) − 1/B
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PROOF THAT DEGREE n IS ENOUGH

SoS certificate of degree 2 :

g(x) =

(√
g(0, 0) · (1 − x1)(1 − x2)

)2

︸ ︷︷ ︸
s0

f (x) =
∑
I⊆[n]

(√
f (xI) · δI(x)

)2

︸ ︷︷ ︸
s0
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PROOF THAT DEGREE n IS ENOUGH

Is SoS certificate of degree 1 possible?

Consider s0 of degree 1:

We require f − s0 > 0 but we have:
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ATTACK PLAN

1. Prove upper bounds on how spiky can a SoS of degree d be.

2. Perform a boolean analysis on the function f and find vertices
that cannot be satisfied.
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HOW SPIKY CAN BE SOS OF DEGREE d
Lemma

For every function f : {0, 1}n → R of degree at most d and every
subset J ⊆ [n] the following holds:∑

S⊆[n]

f 2(xS) >
2n∑d

i=0

(n
i

) f 2(xJ).

Moreover, for every J ⊆ [n] there exists a degree d polynomial such
that the above inequality is satisfied with equality.

Moreover holds if we put SoS instead of f :

∑
i h2

i s.t. for every i, hi : {0, 1}n → R is of degree at most d
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MAIN THEOREM

Theorem

There is no degree d certificate for f over system G, if for every cJ > 1,
for every J such that xJ ∈ H−(f ), the following holds

∑
xJ∈H+(f) f (xJ) +

∑
xJ∈H−(f) f (xJ)(1 − cJ) <

(
2n∑d

k=0 (
n
k)
− 1
)∑

xI∈H−(f) cI
f(xI)
gI(xI)

·minxJ∈H
J 6=I

gI(xJ)
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APPLICATION TO EIH PROBLEM

−1 = s0︸︷︷︸
deg 2d + 2

+
∑
I⊆[n]

sI(x)︸︷︷︸
deg 2d

 ∑
i∈[n]\I

xi +
∑
j∈I

(1 − xj) − 1/B



From the main Theorem, no degree d SoS proof if
∑

xJ∈H+(f) f (xJ) +
∑

xJ∈H−(f) f (xJ)(1 − cJ) <

(
2n∑d

k=0 (
n
k)
− 1
)∑

xI∈H−(f) cI
f(xI)
gI(xI)

·minxJ∈H
J 6=I

gI(xJ)

⇓

(−1)
∑

I∈[n](1 − cJ) <

(
2n∑d

k=0 (
n
k)
− 1
)∑

I∈[n] cI
−1

−1/B · (1 − 1/B)

For c = 1/2n∑
I⊂[n] cI

c−1
c <

(
2n∑d

k=0 (
n
k)
− 1
)
(B − 1) ⇒ 1

B−1 <

(
2n∑d

k=0 (
n
k)
− 1
)
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APPLICATION TO EIH PROBLEM

Lemma
SoS rank is lower and upper bounded by minimum d that satisfies
respectively:

B
B − 1

>
2n∑d

k=0

(n
k

) and
Bn

Bn − 1
>

2n∑d
k=0

(n
k

)

For B = 2: d n
2 e 6 SoS − rank 6 d n

2 +
√

n log 2ne
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APPROXIMATION THEORY

Moreover, we use the following result from the literature:

Theorem (Paturi, Sherstov, de Wolf)

For every constant 2−n 6 c < 1/2 the minimum degree of a real
polynomial that approximates a NOR boolean function in `∞-norm
within an error c is Θ(

√
n +

√
n log 1/c).
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MIN KNAPSACK

MK : min
∑
i∈[n]

xi s.t.
∑
i∈[n]

xi >
1
P

, x ∈ {0, 1}n

For P = 2:

- Lovász-Schrijver - rank n (Cook, Dash),
- Sherali-Adams - rank n (Laurent),
- SoS - rank 2 for n = 2 (Laurent)
- SoS -rank > Ω(log1−ε n), for ε > 0.

Laurent question: what is the SoS rank for MK Problem.

Our result: Ω(
√

n) 6 SoS − rank 6 d n+4d
√

ne
2 e



41

APPLICATION TO MK PROBLEM

∑
i∈[n]

xi − 1 = s0︸︷︷︸
deg 2d + 2

+ s1(x)︸︷︷︸
deg 2d

∑
i∈[n]

xi − 1/P



Degree d SoS necessarily has to satisfy

s1(0, . . . , 0) >
−1
− 1

P

= P and s1(x) 6
∑n

i=1 xi − 1∑x
i=1 xi −

1
P

6 1 for x∈{0,1}n

x 6=(0,...,0)

Lemma
The SoS rank lower bound is at least Ω(

√
n +

√
n log P).

s(x) := s(x)
P would approximates NOR with l∞-norm within an error 1/P.
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SET COVER

SC : min
∑
i∈[n]

xi s.t.
∑

i∈[n]\{j}

xi > 1 ∀j ∈ [n], x ∈ {0, 1}n

- SA - rank at least n − 2 (Bienstock & Zuckerberg)

Bienstock & Zuckerberg question: what is the SoS rank for SC?

Bienstock & Zuckerberg conjecture: SoS rank is > n/4.

Our result: Ω(
√

n) 6 SoS − rank
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APPLICATION TO SC PROBLEM

∑
i∈[n]

xi − 2 = s0︸︷︷︸
deg 2d + 2

+
∑
j∈[n]

sj(x)︸︷︷︸
deg 2d

 ∑
j 6=i∈[n]

xi − 1



Let s =
∑

j∈[n] sj. Degree d SoS necessarily has to satisfy

s(0, . . . , 0) >
−1
− 1

2

= 2 and s(x) 6
∑n

i=1 xi − 1∑x
i=1 xi −

1
2

6 1 for x∈{0,1}n

|x|=3k, k∈[n/3]

Lemma
The SoS rank lower bound is at least Ω(

√
n).

s(x) := s(x)
3 would approximates NOR with l∞-norm within an 1/3 over

the hypercube {0, 1}n/3.
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Thank you


