Sum-of-Squares Hierarchy for Symmetric Formulations over Boolean hypercube

Adam Kurpisz

ETH Zürich

POEMA 2nd workshop

Let

$$\mathcal{G} := \{g_0 := 1, g_1, \dots, g_m : g_i \in \mathbb{R}[x], i \in [m]\}$$

be the set of polynomials and

$$\mathcal{G}_+ = \{ x \in \mathbb{R}^n \mid g(x) \ge 0 \; \forall_{g \in \mathcal{G}} \}$$

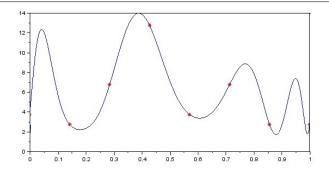
be the subset of \mathbb{R}^n where polynomials in \mathcal{G} are nonnegative.

Polynomial Optimization Problem

$$\mathbb{P}: \quad \min \{ f(x) \mid x \in \mathcal{G}_+ \}$$

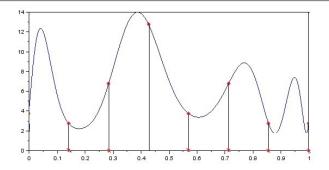
$$\begin{array}{l} \textit{Let:} f \in \mathbb{R}[x] \\ \mathfrak{G} := \{g_0 := 1, g_1, \dots, g_m : \ g_i \in \mathbb{R}[x], \ i \in [m]\} \\ \mathfrak{G}_+ = \{x \in \mathbb{R}^n \mid g(x) \ge 0 \ \forall_{g \in \mathfrak{G}}\} \end{array}$$

 $\mathbb{P}: \quad \min\{f(x) \mid x \in \mathcal{G}_+\}$



$$\begin{array}{l} \textit{Let:} f \in \mathbb{R}[x] \\ \mathfrak{G} := \{g_0 := 1, g_1, \dots, g_m : \ g_i \in \mathbb{R}[x], \ i \in [m]\} \\ \mathfrak{G}_+ = \{x \in \mathbb{R}^n \mid g(x) \ge 0 \ \forall_{g \in \mathfrak{G}}\} \end{array}$$

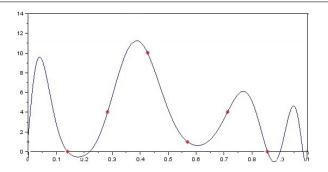
 $\mathbb{P}: \quad \min\{f(x) \mid x \in \mathcal{G}_+\}$



Let:
$$f \in \mathbb{R}[x]$$

 $\mathfrak{G} := \{g_0 := 1, g_1, \dots, g_m : g_i \in \mathbb{R}[x], i \in [m]$
 $\mathfrak{G}_+ = \{x \in \mathbb{R}^n \mid g(x) \ge 0 \ \forall_{g \in \mathfrak{G}}\}$

 $\mathbb{P}: \min\{f(x) \mid x \in \mathcal{G}_+\} \quad \Rightarrow \quad \mathbb{P}: \max\{\lambda \in \mathbb{R} \mid f - \lambda \in \mathcal{K}_{\mathcal{G}}\}\$



 $\mathbb{P}: \quad \max\{\lambda \in \mathbb{R} \mid f - \lambda \in \mathcal{K}_{\mathcal{G}}\}$

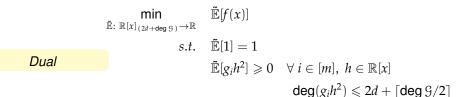
for $\mathcal{K}_{\mathcal{G}}\text{-}$ the cone of polynomials that are nonnegative over the set \mathcal{G}_+

 SOS^{2d} : max{ $\lambda \in \mathbb{R} | f - \lambda \in \Sigma_{G}^{2d}$ }

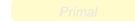
$$\Sigma_{\mathfrak{S}}^{2d}: \{p \mid p = \underbrace{s_0}_{deg \ 2d + \lceil \deg \mathfrak{S}/2 \rceil} + \sum_i \underbrace{g_i(x)s_i(x)}_{deg \ 2d + \lceil \deg \mathfrak{S}/2 \rceil} \} \quad \text{and} \quad s_i \in SoS$$

 $s_i \in SoS_d \implies SDP \text{ of size} \approx \binom{n+d}{d}.$

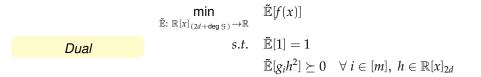
SOS^{2d} - Two options



SOS^{2d} - Two options



 $egin{array}{ccc} \max & \lambda \ & \lambda \in \mathbb{R} \ & s.t. & f-\lambda \in \Sigma_{S}^{2d} \end{array}$



ETH zürich

THE LASSERRE/SOS HIERARCHY

Consider a function μ : $\{0, 1\}^n \to \mathbb{R}$. For $I \subseteq [n]$, $x_I \in \{0, 1\}^n$, s.t. $(x_I)_i = 1$ iff $i \in I$,

$$\mu(x_I) = \tilde{\mathbb{E}}[\prod_{i \in I} x_i \prod_{[n] \setminus I} (1 - x_i)]$$

 $\mu(x_I)$ can be thought of as an indicator variable of the solution I

SoS constraints: first type

$$\tilde{\mathbb{E}}[1] = \sum_{I \subseteq [n]} \mu(x_I) = 1.$$

 $\mu(x_I)$ is often called a *pseudodistribution* as it mimics an actual distribution in some sense.

$$\tilde{\mathbb{E}}f = \sum_{I \in [n]} \mu(x_I) f(x_I)$$

THE LASSERRE/SOS HIERARCHY

To each $I \subseteq [n]$ we associate a vector $Z_I^t \in \mathbb{R}^{\binom{n}{\leq t}}$.

$$Z_I^t[J] = \begin{cases} 1, \text{ if } J \subseteq I, & |I|, |J| \leqslant t \\ 0, \text{ otherwise.} \end{cases}$$

The matrix $Z_I^t(Z_I^t)^{\top}$ is PSD $\longrightarrow \mu(x_I)Z_I^t(Z_I^t)^{\top}$ is PSD when $\mu(x_I) \ge 0$.

SoS constraints: second type

$$\sum_{I\subseteq [n]} \mu(x_I) Z_I^t(Z_I^t)^\top \succeq 0.$$

ETH zürich

THE LASSERRE/SOS HIERARCHY

Denote by $g_{\ell}(x_I)$ the constraint g_{ℓ} evaluated at the point $x \in \{0, 1\}^n$ with $(x_I)_i = 1 \Leftrightarrow i \in I$.

For feasible points we have $g(x_I) \ge 0 \longrightarrow \mu(x_I)g(x_I)Z_I^t(Z_I^t)^\top$ should be PSD when $\mu(x_I) \ge 0$ since $Z_I^t(Z_I^t)^\top \succeq 0$.

SoS constraints: third type

$$\sum_{I\subseteq [n]} \mu(x_I)g(x_I)Z_I^t(Z_I^t)^\top \succeq 0.$$

0/1 Integer program

$$\min_{x \in \{0,1\}^n} f(x)$$
 f, g_i - polynomials $g_i(x) \ge 0$, for $i = [m]$

Lasserre/SoS at level t

$$SOS^{2t}: \min_{\mu:2^n \to \mathbb{R}} \sum_{I \subseteq [n]} f(x_I) \mu(x_I) \qquad x_I = \begin{cases} 1 \text{ if } i \in I \\ 0 \text{ otherwise} \end{cases}$$
$$\sum_{I \subseteq [n]} \mu(x_I) = 1$$
$$\sum_{I \subseteq [n]} \mu(x_I) Z_I^{t+1} (Z_I^{t+1})^\top \succeq 0 \qquad Z_I^t[J] = \begin{cases} 1 \text{ if } J \in I, |J|, |I| \leqslant t \\ 0 \text{ otherwise} \end{cases}$$
$$\sum_{I \subseteq [n]} \mu(x_I) g_i(x_I) Z_I^t (Z_I^t)^\top \succeq 0 \text{ for } i \in [m] \qquad \tilde{\mathbb{E}}f = \sum_{I \in [n]} \mu(x_I) f(x_I) \end{cases}$$

ETH zürich

SIMPLIFYING THE PSDNESS CONDITIONS In general the PSDness is difficult to analyse

Idea: simplify by setting $\mu_k = \mu(x_I)$ for every I with |I| = k.

"Every solution of the same size gets the same value".

SoS constraint 2. simplifies to:

$$\sum_{I\subseteq [n]} \mu(x_I) Z_I^t(Z_I^t)^\top = \sum_{k=0}^n \mu_k \sum_{I\subseteq [n]:|I|=k} Z_I^t(Z_I^t)^\top$$

If constraints *g* symmetric s.t. $g_k = g(x_I)$ for every *I* with |I| = k, SoS constraint 3. simplifies to

$$\sum_{I\subseteq [n]} \mu(x_I)g(x_I)Z_I^t(Z_I^t)^\top = \sum_{k=0}^n \mu_k g_k \sum_{I\subseteq [n]:|I|=k} Z_I^t(Z_I^t)^\top$$

ETH zürich

MAIN RESULT

Theorem

For any set of values $\{z_k \in \mathbb{R} : k = 0, ..., n\}$, we have

$$\sum_{k=0}^{n} z_k \sum_{I \subseteq [n]: |I| = k} Z_I^t (Z_I^t)^\top \succeq 0$$

if and only if

$$\sum_{k=h}^{n-h} \binom{n}{k} z_k P_h(k) \ge 0 \ \forall h \in \{0, ..., t\}$$

for every "well behaved" univariate polynomial $P_h(k)$. In particular

- 1. $\deg(P_h) = 2t$.
- **2**. $P_h(k) = 0$ for $k \in \{0, \dots, h-1\} \cup \{n-h+1, \dots, n\}$,
- **3**. $P_h(k) \ge 0$ for $k \in [h 1, ..., n h + 1]$.

MAIN THEOREM - DISCUSSION

Symmetry in the variables $\mu(x_I)$ allows us to find eigenvectors with many repeated entries \rightarrow simplified analysis.

The derivation is mainly manipulating the quadratic form

$$v^\top \left(\sum_{I \subseteq [n]: |I| = k} Z_I^t (Z_I^t)^\top \right) v.$$

We identify all possible forms of the eigenvalues of the matrix and propose to test several candidates.

Recently, a similar result was independently obtained on the dual side by Blekherman.

MAIN THEOREM - RELATED RESULTS Theorem (Blekherman)

Let $f : \{0, 1\}^n \to \mathbb{R}_+$ be a symmetric non-negative real-valued boolean function and \tilde{f} a univariate polynomial such that $f(x_1, \ldots, x_n) = \tilde{f}(x_1 + \ldots + x_n)$. If f can be written as the sum of squares of n-variate polynomials of degree $d \leq n/2$, then we can write

$$\tilde{f}(z) = q_d(z) + z(n-z)q_{d-1}(z) + z(z-1)(n-z)(n-1-z)q_{d-2}(z) + \dots + z(z-1)\cdots(z-d+1)(n-z)(n-1-z)\cdots(n-d+1-z)q_0(z)$$

where each $q_t(z)$ is a univariate SoS polynomial with $deg(q_t) \leq 2t$.

RHS of the SoS representation of univariate polynomial \tilde{f} can be written as a combination of polynomials P_h and vice versa.

ETH zürich

MAX CUT IN THE COMPLETE GRAPH

Input: a graph G = (V, E), **Output:** a set of vertices $S \subseteq V$ such that number of edges between *S* and $V \setminus S$ is maximized.

$$f(x) = \left(\|x\|_1 - \left\lfloor \frac{n}{2} \right\rfloor \right) \left(\|x\|_1 - \left\lceil \frac{n}{2} \right\rceil \right) \ge 0 \qquad x \in \{0, 1\}^n$$

The SoS rank is at least $\lfloor \frac{n}{2} \rfloor$ when *n* is odd (Grigoriev; Laurent). And at most $\lceil \frac{n}{2} \rceil$ (Fawzi, Saunderson, Parrilo).

Used for example by Lee, Raghavendra and Steurer to derive extension complexities for max CSPs.

Question (O'Donnell): Is there a simple proof?

ETH zürich

MAX CUT IN THE COMPLETE GRAPH

Consider the symmetric solution: $\mu_k = (n+1) {n/2 \choose n+1} \frac{(-1)^{n-k}}{n/2-k}$.

► Recall: µ feasible for SoS if

$$\sum_{k=0}^{n} \binom{n}{k} \mu_k P_h(k) \ge 0$$

where P_h is of degree 2t and $P_h(n/2) \ge 0$.

Polynomial rem. thm.: $P_h(k) = (n/2 - k)Q(k) + P_h(n/2)$.

$$\sum_{k=0}^{n} \binom{n}{k} \mu_{k} P_{h}(k) = \underbrace{\sum_{k=0}^{n} \binom{n}{k} \mu_{k}(n/2 - k)Q(k)}_{=0} + P_{h}(n/2) \underbrace{\sum_{k=0}^{n} \binom{n}{k} \mu_{k}}_{=1} \ge 0$$

BPOP

BPOP: $\min_{x \in \{0,1\}^n} f(x)$ where $\deg(f) = r$.

For r = 2*:*

At least $\lfloor \frac{n}{2} \rfloor$ levels required for exact solution (Laurent).

- Follows by showing that the SoS relaxation of the function

$$f(x) = \left(\|x\|_1 - \left\lfloor \frac{n}{2} \right\rfloor \right) \left(\|x\|_1 - \left\lceil \frac{n}{2} \right\rceil \right)$$

has a strictly negative minimum over $\{0, 1\}^n$.

At most $\lceil \frac{n}{2} \rceil$ levels are sufficient (Fawzi, Saunderson, Parrilo).

For r > 2*:*

At most $\lceil \frac{n+r-1}{2} \rceil$ levels suffice (Sakaue, Takeda, Kim and Ito).

- Sakaue et al. - numerical evidence that their bound is tight.

OUR LOWER BOUND

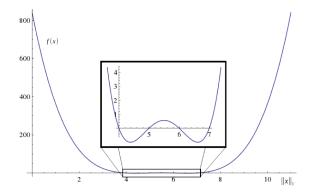
Fix n odd, let r = 2d and consider the problem

$$\min_{x \in \{0,1\}^n} f_d(x) = \left(\|x\|_1 - \left\lfloor \frac{n}{2} \right\rfloor + d - 1 \right)^{\frac{2d}{2}}$$

E.g. for n = 11
-
$$f_1(x) = (||x||_1 - 5)(||x||_1 - 6)$$

- $f_2(x) = (||x||_1 - 4)(||x||_1 - 5)(||x||_1 - 6)(||x||_1 - 7)$

ETH zürich EXAMPLE: $f_2(x)$ WITH n = 11



Fix *n* odd, let r = 2d and consider the problem

$$\min_{\mathbf{x}\in\{0,1\}^n} f_d(\mathbf{x}) = \left(\|\mathbf{x}\|_1 - \left\lfloor\frac{n}{2}\right\rfloor + d - 1\right)^{\frac{2d}{2}}$$

E.g. for n = 11

-
$$f_1(x) = (||x||_1 - 5)(||x||_1 - 6)$$

-
$$f_2(x) = (||x||_1 - 4)(||x||_1 - 5)(||x||_1 - 6)(||x||_1 - 7)$$

Clearly the minimum of f_d over $\{0, 1\}^n$ is 0.

We show: the minimum of the SoS relaxation of f_d is strictly negative at level $\lceil \frac{n+2d-1}{2} \rceil - 1$.

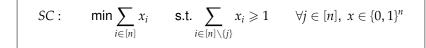
NF ETH zürich Our lower bound - sketch of proof

(Goal:)

the min of the SoS of f_d is strictly negative at level $\lceil \frac{n+2d-1}{2} \rceil - 1$.

- 1. Find a candidate solution μ to the SoS relaxation.
 - $f_d(x)$ depends only on $||x||_1 \rightarrow$ choose μ_k that depends only on |I| = k.
- 2. Show that $\sum_{k=0}^{n} \mu_k \sum_{\substack{I \subseteq [n], \\ |I|=k}} Z_I Z_I^{\top} \succeq 0$ (feasibility).
 - μ_k symmetric \rightarrow application of the symmetry theorem.
- 3. Show that $\sum_{k=0}^{n} {n \choose k} f_d(x_k) \mu_k < 0$ (objective strictly negative).
 - μ symmetric \rightarrow reduces to a certain hypergeometric sum that can be computed in closed form using standard techniques.

SET COVER



SA - requires at least n-3 (Bienstock & Zuckerberg) i.e. to refute the inequality $\sum_{i=1}^{n} x_i < 2$

Bienstock & Zuckerberg conjecture: SoS needs at least n/4.

Our result: $\log^{1-\epsilon} n$ levels of the SoS does not refute $\sum_{i=1}^{n} x_i \leq 1 + o(1)$.

Alternatively: SoS has an integrality gap of 2 - o(1) for MIN KNAPSACK strengthened with cover inequalities.

DETECTING EMPTY INTEGRAL HULL

Consider the system

$$EIH: \quad \sum_{r \in R} x_r + \sum_{r \in [n] \setminus R} (1 - x_r) \ge \frac{1}{B} \quad \text{ for all } R \subseteq [n], \ x \in \{0, 1\}^n$$

Theorem (K, Leppänen, Mastrolilli'15)

For $B \ge 2^{n+1}$, SoS requires *n* levels.

What about other values of B?

ETH zürich

EMPTY INTEGRAL HULL

$$EIH: \quad \sum_{r \in R} x_r + \sum_{r \in [n] \setminus R} (1 - x_r) \ge \frac{1}{B} \quad \text{ for all } R \subseteq [n], \ x \in \{0, 1\}^n$$

For B = 2:

- Lovász-Schrijver rank n (Goemans, Tunçel),
- Lovász-Schrijver with Chvátal or Gomory mixed integer cuts rank *n* (Cook, Dash; Cornuéjols, Li),
- Sherali-Adams rank n (Laurent),

Laurent conjecture: the SoS rank is n-1

Our result: $\Omega(\sqrt{n}) \leq \text{SoS rank} \leq n - \Omega(n^{1/3}).$

ETH zürich

DETECTING EIH - PROOF SKETCH

By symmetry, it is enough to consider the solution $\mu(x_I) = \frac{1}{2^n}$.

By symmetry, it is enough to consider the constraint for R = [n]:

$$\frac{1}{2^n}\sum_{k=h}^{n-h}\binom{n}{k}\left(k-\frac{1}{2}\right)P_h(k) \ge 0 \ \forall h \in \{0,...,t\}$$
(1)

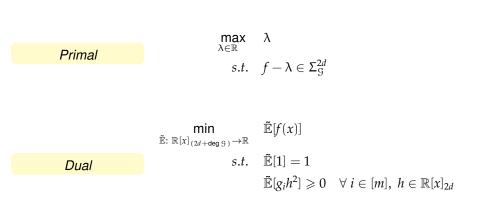
LB: $\Omega(\sqrt{n}) \leq SoS$ rank.

We express the generic polynomial P_h in root form and argue that if the level is small (1) is always satisfied.

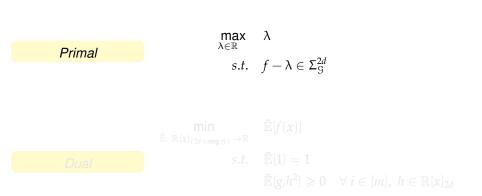
UB: SoS rank $\leq n - \Omega(n^{1/3})$

We give one polynomial $P_0(k) = \prod_{i=1}^{t} (n-k-i+1)^2$ for which we show that (1) is never satisfied when the level is large.

SOS^{2d} - Two options



SOS^{2d} - Two options



ETH zürich DIFFICULTIES WITH PROVING IG

PSDness of very large metrices

$$M_{g_0(\cdot)},\ldots,M_{g_m(\cdot)}\in\mathbb{R}^{\binom{n+d}{d} imes\binom{n+d}{d}}$$

For a given instance one has to provide

solution vector $ilde{\mathbb{E}} \in \mathbb{R}^{\binom{n+d}{d}}$

such that:

- attains superoptimal objective value: $\tilde{\mathbb{E}}[f(x)] < \min_{x \in \mathcal{G}_+} f(x)$
- $M_{g_0(x)},\ldots,M_{g_m(x)} \succeq 0.$

SOS RANK

SoS has rank d for EIH if there exist s_0 and s_I

$$EIH: \sum_{r \in \mathbb{R}} x_r + \sum_{r \in [n] \setminus \mathbb{R}} (1 - x_r) \ge \frac{1}{B} \quad \text{for all } \mathbb{R} \subseteq [n], \ x \in \{0, 1\}^n$$
$$-1 = \underbrace{s_0}_{deg \ 2d + 2} + \sum_{I \subseteq [n]} \underbrace{s_I(x)}_{deg \ 2d} \left(\sum_{i \in [n] \setminus I} x_i + \sum_{j \in I} (1 - x_j) - 1/B \right)$$

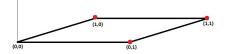
PROOF THAT DEGREE n **IS ENOUGH**

SoS certificate of degree 2 :

$$g(x) = \underbrace{\left(\sqrt{g(0,0)} \cdot (1-x_1)(1-x_2)\right)^2}_{s_0}$$

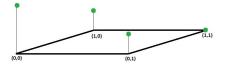
$$f(x) = \underbrace{\sum_{I \subseteq [n]} \left(\sqrt{f(x_I)} \cdot \delta_I(x) \right)^2}_{s_0}$$

PROOF THAT DEGREE n **IS ENOUGH**

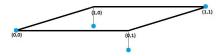


Is SoS certificate of degree 1 possible?

Consider s_0 of degree 1:



We require $f - s_0 \ge 0$ but we have:



ATTACK PLAN

1. Prove upper bounds on how spiky can a SoS of degree d be.

2. Perform a boolean analysis on the function f and find vertices that cannot be satisfied.

F ETH zürich How spiky can be SoS of degree d

Lemma

For every function $f : \{0, 1\}^n \to \mathbb{R}$ of degree at most d and every subset $J \subseteq [n]$ the following holds:

$$\sum_{S\subseteq [n]} f^2(x_S) \ge \frac{2^n}{\sum_{i=0}^d \binom{n}{i}} f^2(x_J).$$

Moreover, for every $J \subseteq [n]$ there exists a degree *d* polynomial such that the above inequality is satisfied with equality.

Moreover holds if we put SoS instead of *f*:

 $\sum_i h_i^2$ s.t. for every $i, h_i : \{0, 1\}^n \to \mathbb{R}$ is of degree at most d

MAIN THEOREM

Theorem

There is no degree *d* certificate for *f* over system \mathfrak{G} , if for every $c_J \ge 1$, for every *J* such that $x_J \in \mathfrak{H}^-(f)$, the following holds

$$\sum_{x_J \in \mathcal{H}^+(f)} f(x_J) + \sum_{x_J \in \mathcal{H}^-(f)} f(x_J)(1-c_J) < \left(\frac{2^n}{\sum_{k=0}^d \binom{n}{k}} - 1\right) \sum_{x_I \in \mathcal{H}^-(f)} c_I \frac{f(x_I)}{g_I(x_I)} \cdot \min_{\substack{x_J \in \mathcal{H}}} g_I(x_J)$$

ETH zürich

APPLICATION TO EIH PROBLEM

$$-1 = \underbrace{s_0}_{deg \ 2d+2} + \sum_{I \subseteq [n]} \underbrace{s_I(x)}_{deg \ 2d} \left(\sum_{i \in [n] \setminus I} x_i + \sum_{j \in I} (1-x_j) - 1/B \right)$$

From the main Theorem, no degree d SoS proof if

APPLICATION TO EIH PROBLEM

Lemma

SoS rank is lower and upper bounded by minimum *d* that satisfies respectively:

$$rac{B}{B-1} \geqslant rac{2^n}{\sum_{k=0}^d \binom{n}{k}}$$
 and $rac{Bn}{Bn-1} > rac{2^n}{\sum_{k=0}^d \binom{n}{k}}$

For
$$B = 2$$
: $\lceil \frac{n}{2} \rceil \leq SoS - rank \leq \lceil \frac{n}{2} + \sqrt{n \log 2n} \rceil$

APPROXIMATION THEORY

Moreover, we use the following result from the literature:

Theorem (Paturi, Sherstov, de Wolf)

For every constant $2^{-n} \leq c < 1/2$ the minimum degree of a real polynomial that approximates a NOR boolean function in ℓ_{∞} -norm within an error c is $\Theta(\sqrt{n} + \sqrt{n \log 1/c})$.

MIN KNAPSACK

$$MK: \min \sum_{i \in [n]} x_i \quad \text{ s.t. } \sum_{i \in [n]} x_i \ge \frac{1}{P}, \ x \in \{0, 1\}^n$$

For P = 2:

- Lovász-Schrijver rank n (Cook, Dash),
- Sherali-Adams rank n (Laurent),
- SoS rank 2 for n = 2 (Laurent)
- SoS -rank $\geq \Omega(\log^{1-\epsilon} n)$, for $\epsilon > 0$.

Laurent question: what is the SoS rank for MK Problem.

Our result:
$$\Omega(\sqrt{n}) \leq SoS - rank \leq \lfloor \frac{n+4\lfloor \sqrt{n} \rfloor}{2} \rfloor$$

ETH zürich

APPLICATION TO MK PROBLEM

$$\sum_{i \in [n]} x_i - 1 = \underbrace{s_0}_{deg \ 2d + 2} + \underbrace{s_1(x)}_{deg \ 2d} \left(\sum_{i \in [n]} x_i - 1/P \right)$$

Degree d SoS necessarily has to satisfy

$$s_1(0,\ldots,0) \geqslant rac{-1}{-rac{1}{p}} = P$$
 and $s_1(x) \leqslant rac{\sum_{i=1}^n x_i - 1}{\sum_{i=1}^x x_i - rac{1}{p}} \leqslant 1 ext{ for } {x \in \{0,1\}^n \atop x \neq (0,\ldots,0)}$

Lemma

The SoS rank lower bound is at least $\Omega(\sqrt{n} + \sqrt{n \log P})$.

 $\bar{s}(x) := \frac{s(x)}{p}$ would approximates NOR with l_{∞} -norm within an error 1/P.

SET COVER

$$SC: \qquad \min \sum_{i \in [n]} x_i \qquad \text{s.t.} \sum_{i \in [n] \setminus \{j\}} x_i \ge 1 \qquad \forall j \in [n], \ x \in \{0, 1\}^n$$

- SA - rank at least n - 2 (Bienstock & Zuckerberg)

Bienstock & Zuckerberg question: what is the SoS rank for SC?

Bienstock & Zuckerberg conjecture: SoS rank is $\ge n/4$.

Our result: $\Omega(\sqrt{n}) \leq SoS - rank$

ETH zürich

APPLICATION TO SC PROBLEM

$$\sum_{i \in [n]} x_i - 2 = \underbrace{s_0}_{deg \ 2d + 2} + \sum_{j \in [n]} \underbrace{s_j(x)}_{deg \ 2d} \left(\sum_{j \neq i \in [n]} x_i - 1 \right)$$

Let $s = \sum_{j \in [n]} s_j$. Degree *d* SoS necessarily has to satisfy

$$s(0,...,0) \ge \frac{-1}{-\frac{1}{2}} = 2$$
 and $s(x) \le \frac{\sum_{i=1}^{n} x_i - 1}{\sum_{i=1}^{x} x_i - \frac{1}{2}} \le 1$ for $\frac{x \in \{0,1\}^n}{|x| = 3k, \ k \in [n/3]}$

Lemma

The SoS rank lower bound is at least $\Omega(\sqrt{n})$.

 $\bar{s}(x) := \frac{s(x)}{3}$ would approximates NOR with l_{∞} -norm within an 1/3 over the hypercube $\{0, 1\}^{n/3}$.

Thank you