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Polynomial optimization on the binary cube

We consider the problem of computing:

fmin := min
x∈Bn

f(x), (BPOP)

where

I f ∈ R[x] is a polynomial of degree d.

I Bn := {0, 1}n ⊆ Rn is the boolean hypercube.

Example (MaxCut)

For the complete graph Kn with edge-weights wij ≥ 0, we have:

MaxCut(w) = max
x∈Bn

∑
1≤i<j≤n

wij(xi − xj)2.

I BPOP is NP-hard in general

I Many techniques exist for approximation

I Today: two semidefinite hierarchies due to Lasserre
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The outer Lasserre hierachy

Observation
We can rewrite:

fmin = max{λ ∈ R : f − λ ≥ 0 on Bn}

Definition (Lasserre, 2001)

For r ∈ N, define:

f(r) = max{λ ∈ R : f − λ is a sum-of-squares of degree ≤ 2r on Bn}

I f(r) ≤ f(r+1) ≤ fmin

I For fixed r, f(r) can be computed efficiently using SDP

Question
What can be said of the quality of f(r), i.e., can we bound fmin − f(r)?

I Finite convergence: f(r) = fmin when r ≥ n+d−1
2

[Fawzi, Saunderson, Parrilo 2016 (d = 2)] [Sakaue et al. 2017 (d > 2)]

I But, nothing is known for r < n+d−1
2

, when the bound is not exact.
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Analysis of the outer hierarchy

Theorem (Main result on the outer hierachy)

Let f ∈ R[x]d and choose r ∈ N such that t := r/n ∈ [0, 1/2]. Then:

fmin − f(r)

‖f‖∞
≤ Cd

(
1/2−

√
t(1− t) + t1/6

√
1− t

n1/3

)
︸ ︷︷ ︸

ϕ(t;n)

when d(d+ 1) · ϕ(t;n) ≤ 1/2.

I This analysis applies in the regime r ≈ t · n, and becomes sharper as
n→∞
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The inner (measure-based) Lasserre hierachy

Observation
We can rewrite:

fmin = min
ν

{∫
Bn

fdν :

∫
Bn

dν = 1

}

Definition (Lasserre, 2010)

Let µ be the uniform measure on Bn. For r ∈ N, define:

f (r) = min
s∈Σr [x]

{∫
Bn

f · sdµ :

∫
Bn

sdµ = 1

}

I f (r) ≥ f (r+1) ≥ fmin

I For fixed r, f (r) can be computed efficiently using SDP

Theorem (Main result on the inner hierachy)

Let f ∈ R[x]d and choose r ∈ N such that t := r/n ∈ [0, 1/2]. Then:

f (r) − fmin

‖f‖∞
≤ 1

2
Cd

(
1/2−

√
t(1− t) + t1/6

√
1− t

n1/3

)
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Summary

I We have the hierarchies:

(outer) f(r) = max{λ ∈ R : f − λ is sos of degree ≤ 2r on Bn}

(inner) f (r) = min
s∈Σr [x]

{∫
Bn

f · sdµ :

∫
Bn

sdµ = 1

}
I Satisfying:

f(r) ≤ fmin ≤ f (r) ≤ fmax

I We wish to bound:

fmin − f(r)

‖f‖∞
and

f (r) − fmin

‖f‖∞
I We focus on the outer hierarchy, but the inner hierarchy will play an

important role in the proof
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Key steps for analyzing the outer hierarchy

1. Use the polynomial kernel technique to produce sum-of-squares
representations (Fang, Fawzi 2020)

2. Perform a symmetry reduction using classical Fourier analysis on Bn

3. Link the reduced problem to an analysis of the inner hierarchy in a
univariate setting

4. Exploit a known connection between the inner hierarchy and extremal
roots of orthogonal polynomials (Krawtchouk)

Observation
We may assume for the proof that fmin = f(0) = 0 and ‖f‖∞ = 1.
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Step 1: The polynomial kernel technique (Fang, Fawzi 2020)

Goal
Find a sum-of-squares representation of f + λ for some small λ > 0.

I Consider a polynomial kernel of the form:

K(x, y) := q2(dham(x, y)) (x, y ∈ Bn),

with q ∈ R[t]r a univariate polynomial to be chosen later

I The kernel K induces a linear operator on R[x] by:

Kp(x) :=

∫
Bn

p(y)K(x, y)dµ(y) =
1

2n

∑
y∈Bn

p(y)K(x, y)

I When p ≥ 0 on Bn, then Kp is sos of degree ≤ 2r on Bn (!)

I If we choose λ big enough s.t. K−1(f + λ) ≥ 0 on Bn, we find that

f + λ = KK−1(f + λ)︸ ︷︷ ︸
≥0

is sos of degree ≤ 2r on Bn

I This immediately implies fmin − f(r) ≤ λ
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Step 1: The polynomial kernel technique (Fang, Fawzi 2020)

Problem: How do we ensure that K−1(f + λ) ≥ 0 on Bn?

I If we assume K(1) = 1, we know that K−1(f + λ) ≥ 0 on Bn if:

‖K−1p− p‖∞ ≤ λ for all p ∈ R[x]d with ‖p‖∞ = 1.

I We will bound this quantity by considering the eigenvalues of K

Funk-Hecke formula
The eigenvalues of K(x, y) = q2(d(x, y)) are given by the coefficients λi in the
expansion of q2 into the Krawtchouk polynomials Ki:

q2(t) =

2r∑
i=0

λiKi(t)

9 / 15



Step 2. Fourier analysis on Bn and symmetry reduction

Characters and Krawtchouk polynomials

I For a ∈ Bn define the character χa(x) := (−1)a·x

I The characters form an ONB for the space R[x] := R[x]/(x2
i = xi) of

polynomials on Bn.

I Then, R[x] decomposes as:

R[x] = H0 ⊥ H1 ⊥ · · · ⊥ Hn, Hi = {χa : |a| = i}

The components Hi are invariant and irreducible under the symmetries of
Bn (permutations and bit-flips)

I We can write p ∈ R[x]d as (harmonic decomposition):

p = p0 + p1 + · · ·+ pd (pi ∈ Hi)

I The Krawtchouk polynomials Ki are the orthogonal polynomials w.r.t. the
measure ω =

∑n
t=0

(
n
t

)
δt, with 〈f, g〉ω =

∫ n
0
f · gdω =

∑n
t=0

(
n
t

)
f(t)g(t).

I Key fact: For x, y ∈ Bn with d(x, y) = k, we have:∑
|a|=i

χa(x)χa(y) = Ki(k)
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Step 2. Fourier analysis on Bn and symmetry reduction

Theorem (Funk-Hecke)

Let q ∈ R[t]r, and decompose q2 as q2(t) =
∑2r
i=0 λiKi(t). Then the kernel

K(x, y) = q2(d(x, y)) satisfies:

Kp = λ0p0 + λ1p1 + · · ·+ λdpd for p ∈ R[x]d

Proof.
Apply the key fact to show that Kχa = λ|a|χa for all a ∈ Bn

Recall
We want to choose q such that K(1) = 1 and

‖K−1p− p‖∞ is small for all p ∈ R[x]d with ‖p‖∞ = 1

Upshot

Using Funk-Hecke, we find that if λ0 = 1, then K(1) = 1 and:

‖K−1p− p‖∞ ≤
d

max
k=0
‖pk‖∞ ·

d∑
i=1

|1− λ−1
i | ≤ 2Cd

d∑
i=1

(1− λi)

So we want a q with λ0 = 1, and λi as close as possible to 1.
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Step 3. Connection to the inner hierarchy

Goal
Find a univariate q ∈ R[t]r for which the coefficients in q2(t) =

∑2r
i=0 λiKi(t)

satisfy:

λ0 = 1 and
d∑
i=1

(1− λi) is small

I Recall that the Ki are orthogonal w.r.t. ω =
∑n
t=0

(
n
t

)
δt and so we have

λi = 〈K̂i, q2〉ω :=

∫ n

0

K̂i · q2dω,

where K̂i := Ki/‖Ki‖2ω = Ki/Ki(0).
I We thus achieve our goal by solving:

inf
q∈R[t]r

{∫ n

0

g · q2dω :

∫ n

0

q2dω = 1

}
, with g(t) := d−

d∑
i=1

K̂i(t).

I This is just the inner Lasserre hierarchy for minimizing g on [0, n] w.r.t.
the measure ω!

I To summarize, we have: fmin − f(r) ≤ 2Cd
(
g

(r)
ω − gmin

)
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Step 4. Analyzing the inner hierachy

Theorem (special case of de Klerk, Laurent 2020)

Let ĝ(t) = ct, c > 0 be a linear polynomial. Then:

ĝ(r)
ω − ĝmin = c · ξr+1,

where ξr+1 is the least root of Kr+1.

I Problem: g(t) = d−
∑d
i=1 K̂i(t) is not linear!

I But, it is upper estimated by its linear approximation at t = 0:

g(t) ≤ ĝ(t) := d(d+ 1) · (t/n) (t = 0, 1, . . . , n)

I We may conclude:

g(r)
ω − gmin ≤ ĝ(r)

ω − ĝmin = d(d+ 1) · (ξr+1/n)

Theorem (Levenshtein 1995)

The least root ξr of Kr satisfies:

ξnr /n ≤
1

2
−
√

(1− t)t+ t1/6
√
1− t

n1/3
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Concluding remarks

I We have shown a guarantee on the outer hierarchy fmin − f(r) using a
connection to (a special case of) the inner hierachy

I The treatment of this special case can be extended to obtain our result on
the inner hierarchy

I As far as we know, this is the first analysis in the setting r < n+d−1
2

I But, our results apply only in the setting r ≈ t · n. In particular they give
no information for fixed r ∈ N

I The entire analysis carries over the q-ary cube Qn = {0, 1, . . . , q − 1}n

I Open question: is it possible to add (linear) constraints?
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