POEMA

Meeting Type	POEMA 2 nd Workshop
Date	20 October 2020
Time	09:30 – 15:30 CEST
Speakers	Sabine Burgdorf (University of Konstanz)
,	Jakub Marecek (Czech Technical University in Prague)
	Lucas Slot (CWI)
	Adam Kurpisz (ETH Zurich)
No of attendants	50

	Γ
Talk: Non-commutative polynomial optimization Sabine Burgdorf (University of Konstanz)	 Victor Magron: Related to the NC RAG consequence: is there an example of trace positive polynomial on the matricial NC cube which does not admit an NC Putinar representation? Alejandro Gonzalez Nevado: Are there still open weaker versions of the Connes' embedding problem that could be true? Victor Magron: The last summand is a sum of commutators, right? Victor Magron: Recent news: there is a flaw in the paper, see <u>https://mycqstate.wordpress.com/</u> Victor Magron: The one disproving Connes embedding conjecture Ion Nechita: Well, there was a flaw in a previous paper Sandergribling: The authors have fixed this flaw though Victor Magron: They wrote a patch: <u>https://arxiv.org/abs/2009.12982</u>
Talk:The Lasserre hierarchy for binary polynomial optimization by Lucas Slot (CWI)	 Victor Magron: Could this analysis be extended to maxcut problems? Ngoc Hoang Anh MAI: Do you think what is the most expensive part in your method to apply binary polynomial optimization in practice? Frank Vallentin: How does the convergence rate change when going from the binary cube to the unit sphere? Victor Magron: Is there a connection between your orthogonal polynomials (Krawtchouk) and the Christoffel-Darboux kernel associated to the measure omega? Victor Magron: It's the sum of squares of orthogonal polynomials associated to the measure Victor Magron: More accurately it's K(x,y) = sum Pi(x) Pi(y) where (Pi) is a basis of orthonormal polynomials w.r.t. the measure, assumed to be absolutely continuous