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Warm Up

What is a non-commutative polynomial?

I matrix polynomial M2(R[x ])(
1 2
−2 3

)
x2+

(
2 0
1 1

)
x+
(

1 0
−1 0

)
=

(
x2 + 2x + 1 2x2

−2x2 + x − 1 3x2 + x

)
I free polynomial R〈X ,Y 〉

X 2 + XY − YX + Y 2 6= X 2 + Y 2

I trace polynomial R[Tr(X k ) : k ∈ N]〈X 〉

Tr(X )X 2 + 2 Tr(X 2)X − X 2 + 2

I ...
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Warm Up

What should X represent?

I scalars
I matrices of arbitrary size
I (bounded) operators: symmetric, anti-symmetric
I differential operators, Weyl-operators
I matrices of fixed size
I ...

This talk
Replace scalars by symmetric matrices/operators→ free polynomials
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RAG and POP basics
Polynomial Optimization
I f ∈ R[X ] polynomial in commuting variables
I g0 = 1,g1, . . . ,gr ∈ R[X ] defining a semi-algebraic set:

K = {a ∈ Rn | g0(a) ≥ 0, . . . ,gr (a) ≥ 0}

I Want to minimize f over K

f∗ = inf f (a) s.t. a ∈ K
=supa ∈ R s.t. f − a ≥ 0 on K

I NP-hard
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RAG and POP basics
RAG helps

f∗ =supa ∈ R s.t. f − a ≥ 0 on K NP-hard

I M(g) := {p =
∑

j h2
j gij for some hj ∈ R[X ]}

I sos relaxation (Lasserre, Parrilo)

fsos = supa ∈ R s.t. f − a ∈ M(g)

I fsos is always a lower bound
but might be strict

x4
1 x2

2 + x2
1 x4

2 − 3x2
1 x2

2 + 1
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RAG and POP basics
SOS hierarchy
I M(g)t := {p =

∑
j h2

j gij for some hj ∈ R[X ]t}
I sos hierarchy (Lasserre, Parrilo)

ft = supa ∈ R s.t. f − a ∈ M(g)t SDP

I SDP due to the Gram matrix method:

f sos ⇐⇒ ∃G � 0 : f (x) = [x ]T G[x ]

I We have
I ft ≤ ft+1 ≤ fsos ≤ f∗
I ft converges to fsos as t →∞
I Putinar: If M(g) is archimedean: fsos = f∗
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RAG and POP basics
Moment problem

fsos = supa ∈ R s.t. f − a ∈ M(g)

I dual problem

fmom = inf L(f ) s.t. L ∈ R[x ]∨,L ≥ 0 on M(g)

I This is an SDP (up to degree bounds), using moment matrices

I If optimizing L in fmom has a moment representation then

f∗ ≥ fsos ≥ fmom = L(f )≥ f∗

I Moment representation implies exactness of relaxation

Theorem (Curto, Fialkow)
If the moment matrix of L is flat, then L has a moment representation.
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NC-RAG and NC-POP
Free Polynomials
I Want to replace scalar variables by matrices/operators
I Free algebra R〈X 〉 with non-commuting variables X1, . . . ,Xn

I Polynomial
f =

∑
w

fww

I Let A ∈ (Sd)n: f (A) = f1Id + fX1A1 + fX2X1A2A1 . . .

I Add involution ∗ on R〈X 〉
I fixes R and {X1, . . . ,Xn} pointwise
I X ∗i = Xi

I Consequence
f ∗f (A) = f (A)T f (A) � 0



8

NC-RAG and NC-POP
Free Polynomials
I Want to replace scalar variables by matrices/operators
I Free algebra R〈X 〉 with non-commuting variables X1, . . . ,Xn

I Polynomial
f =

∑
w

fww

I Let A ∈ (Sd)n: f (A) = f1Id + fX1A1 + fX2X1A2A1 . . .

I Add involution ∗ on R〈X 〉
I fixes R and {X1, . . . ,Xn} pointwise
I X ∗i = Xi

I Consequence
f ∗f (A) = f (A)T f (A) � 0



9

NC-RAG and NC-POP
Free Polynomial Optimization
I Let f ∈ R〈X 〉
I g0 = 1,g1, . . . ,gr ∈ R〈X 〉 defining a semi-algebraic set:

K = {A | g0(A) � 0, . . . ,gr (A) � 0}

I Want to minimize f over K

f∗ =supa ∈ R s.t. f − a ≥ 0 on K

What does f ≥ 0 mean?
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NC-RAG and NC-POP
Eigenvalue optimization
I Let f ∈ R〈X 〉

fnc = inf eig(f (A)) s.t. A ∈ K

fnc =supa ∈ R s.t. f − a � 0 on K

I sos relaxation
Mnc(g) := {p =

∑
j h∗j gij hj for some hj ∈ R〈X 〉}

fsos = supa ∈ R s.t. f − a ∈ Mnc(g)

I Fact: fsos ≤ fnc

I Observation: Gram matrix method still works
I Checking if f =

∑
i h∗i hi is an SDP

I Checking if f =
∑

j h∗j gij hj (with degree bounds) is an SDP
Example
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NC-RAG and NC-POP
NC Moment problem

fmom = inf L(f ) s.t. L ∈ R〈X 〉∨,L ≥ 0 on Mnc(g)

I This is an SDP (up to degree bounds), using moment matrices

NC moment problem
For which linear form L : R〈X 〉 → R exists a (finite dimensional) Hilbert
space H, a unit vector φ ∈ H and a ∗-representation π on B(H) such
that for all f ∈ R〈X 〉:

L(f ) = 〈π(f )φ, φ〉?

I Moment representation implies exactness of relaxation

Theorem (Klep et al.)
If the moment matrix of L is flat, then L has a moment representation.
In this case we can also extract a fin. dim. optimizer for f .
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NC-RAG and NC-POP
Eigenvalue optimization: bonus
I Helton/McCullough: f � 0 ⇐⇒ f sos

I proof idea: construct (GNS) a moment representation
I Assume f � 0 but not sos: separating linear form L
I induces a positive semidefinite bilinear form
I Hilbert space H as completion of R〈X 〉/N with

N = {g ∈ R〈X 〉 | L(g∗g) = 0}
I moment representation via X̂i : H → H, p 7→ Xip
I L(p) = 〈p̂1, 1〉H = 〈p(A)1, 1〉 for some representations Ai of X̂i .

I Remark: positivity on matrices of a fixed size is sufficient

I If K is NC-cube or NC-ball we need just one step in the hierarchy
I proof idea: Construct a flat moment matrix

I If K is NC-convex, positivity on matrices of a fixed size is sufficient
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Application: Quantum Chemistry
Compute ground state energy of atoms
I Molecule of N electrons that can occupy M orbitals
I Each orbital associated with creation/anihilation operators a†i ,ai

I Pairwise interaction described by parameters hijkl

min
(a,a†,ϕ)

〈
ϕ,
∑
ijkl

hijkla
†
i a
†
j akalϕ

〉
s.t. ‖ϕ‖ = 1

{a†i ,aj} := a†i aj + aja
†
i = δij

{ai ,aj} = {a†i ,a
†
j } = 0(∑

i

a†i ai − N
)
ϕ = 0
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Application: Systems Control
I Linear closed loop system with unknown feedback G

system F

feedback G

ux0 x
Math. System
#̇»x (t) = A #»x (t) + B #»u ,
#»u (t) = C #»x (t)

I Goal Find G which stabilizes the system

Lyapunov1892

A system ẋ(t) = Ax(t) is stable if there is a P � 0 with AtP + PA ≺ 0

I Lyapunov’s idea extends to our problem: Riccati equations

I Optimization problem is first a feasibility problem
I Can be refined by optimizing a specific singular value

I For a uniform strategy to get G we have to work free of
dimensions
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A system ẋ(t) = Ax(t) is stable if there is a P � 0 with AtP + PA ≺ 0

I Lyapunov’s idea extends to our problem: Riccati equations

I Optimization problem is first a feasibility problem
I Can be refined by optimizing a specific singular value

I For a uniform strategy to get G we have to work free of
dimensions



15

Application: Systems Control
I Linear closed loop system with unknown feedback G

system F

feedback G

ux0 x
Math. System
#̇»x (t) = A #»x (t) + B #»u ,
#»u (t) = C #»x (t)

I Goal Find G which stabilizes the system

Lyapunov1892
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Application: Quantum correlations
I Entanglement is one of the key features in Quantum Information
I Bell ’64:

Classical C

Quantum Q

I How to distinguish C and Q?
I Bell-inequalities, e.g. E0F0 + E0F1 + E1F0 − E1F1
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Basics of quantum theory
I A quantum system corresponds to a Hilbert space H
I Its states are unit vectors on H
I A state on a composite system is a unit vector ψ on a tensor

Hilbert space, e.g. HA ⊗HB

I ψ is entangled if it is not a product state

ψA ⊗ ψB with ψA ∈ HA, ψB ∈ HB

I A state ψ ∈ H can be measured
I outcomes a ∈ A
I POVM: a family {Ea}a∈A ⊆ B(H) with Ea � 0 and

∑
a∈A Ea = 1

I probablity of getting outcome a is p(a) = ψT Eaψ.



18

Nonlocal bipartite correlations
I Question sets S,T , Answer sets A,B
I No (classical) communication
I Which correlations p(a,b | s, t) are possible? ts

a b

I Nonlocal game: winning predicate V : A× B × S × T → {0,1}
I Winning probability (value of the game)

ω = sup
p

∑
s∈S,t∈T

π(s, t)
∑

a∈A,b∈B

V (a,b; s, t)p(a,b|s, t)

= sup
p

∑
a,b,s,t

fabstp(a,b | s, t)
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Correlations

Classical strategy C
Independent probability distributions {pa

s}a and {pb
t }b:

p(a,b | s, t) = pa
s · pb

t

shared randomness: allow convex combinations

Quantum strategy Qc

POVMs {Ea
s }a and {F b

t }b on a joint Hilbert space, but [Ea
s ,F b

t ] = 0:

p(a,b | s, t) = ψT (Ea
s · F b

t )ψ

ω = sup
(x ,y)

∑
a,b,s,t

fabst xa
s yb

t

ω = sup
(X ,Y ,ψ)

∑
a,b,s,t

fabst X a
s Y b

t
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CHSH Game
I Questions S = T = {0,1}, Answers A = B = {0,1}

ts
a b

I Alice & Bob win, if a + b ≡ st mod 2

I ωC =
3
4

I ωQc = 1
2 + 1

2
√

2
≈ 0.854

I lower bounds by brute force
I upper bounds via SOS hierarchies of operator formulation:

I 2 measurements with 2 outcomes each: E0
s ,E1

s , F 0
t ,F

1
t

I Setting Es := E0
s − E1

s , Ft := F 0
t − F 1

t : CHSH inequality

fCHSH := E0F0 + E0F1 + E1F0 − E1F1

I Optimizing fCHSH over variants of C,Qc give ωC , ωQc
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More correlations

Quantum strategy Qc

POVMs {Ea
s }a and {F b

t }b on a joint Hilbert space, but [Ea
s ,F b

t ] = 0:

p(a,b | s, t) = ψT (Ea
s · F b

t )ψ

Quantum strategy Q
POVMs {Ea

s }a and {F b
t }b on Hilbert spaces HA,HB, ψ ∈ HA ⊗HB:

p(a,b | s, t) = ψT (Ea
s ⊗ F b

t )ψ

I locality: (Ea
s ⊗ 1)(1⊗ F b

t ) = (1⊗ F b
t )(E

a
s ⊗ 1)

I If ψ = ψA ⊗ ψB then we have classical correlation

Fact

C ⊆ Q ⊆ cl(Q) ⊆ Qc
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Tsirelson’s problem

Tsirelson’s problem
Is Q = Qc or at least cl(Q) = Qc?

Fact

C ⊆ Q ⊆ cl(Q) ⊆ Qc

I Bell: C 6= Q
I closure conjecture [Slofstra ’16]: Q 6= cl(Q)
I weak Tsirelson [Slofstra ’16]: Q 6= Qc

Theorem (Ji, Natarajan, Vidick, Wright, Yuen,’20)
cl(Q) 6= Qc

I Ozawa: (strong) Tsirelson problem ⇐⇒ Connes conjecture
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Connes embedding conjecture

Connes embedding conjecture
If ω is a free ultrafilter on N and F is a II1 factor with separable
predual, then F can be embedded into the ultrapower Rω.

I F is a II1 factor if F is a subsalgebra of B(H) for an infinite
dimensional Hilbert space H and allows for a finite tracial state

I R is the hyperfinite II1 factor, i.e. it can be constructed as limit of
matrix algebras

I F embeds into Rω iff it allows matricial microstates, i.e. tracial
moments can be approximated by matricial tracial moments:
Let X = {A1, . . . ,An} ⊆ Fsa be finite, then ∀ k ∈ N, ∀ ε > 0
∃ s ∈ N, ∃B1, . . . ,Bn ∈ Ms(C) : |τ(Ai1 . . .Aik )− Tr(Bi1 . . .Bik )| < ε.

The conjecture is false
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Connes and NC RAG
I Let f ∈ R〈X 〉sym

I Mtr := {
∑

i h∗i (1− X 2
i )hi | hi ∈ R〈X 〉}+ [R〈X 〉,R〈X 〉]

I K = {A | Ai ⊆ N,N finite vN algebra : 1− A2
i � 0 for all i ∈ [n]}.

Theorem (Klep, Schweighofer)
The following are equivalent

1 f trace-positive on K ,
2 ∀ε > 0 : f + ε ∈ Mtr .

Theorem (Klep, Schweighofer, (& B., Dykema))
Connes’ conjecture holds iff K can be replaced by

Kfin := {A | Ai ⊆ Ms(R) for some s ∈ N : 1− A2
i � 0 for all i ∈ [n]}.
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Consequences

Operators on finite dimensional Hilbert spaces are not sufficient

I Tsirelson: There is a quantum correlation of the form
p(a,b | s, t) = ψT Ea

s ⊗ F b
t ψ which cannot be written as

p(a,b | s, t) = Ga
s ⊗ Hb

t with commuting operators

I strong Tsirelson: There is a quantum correlation of the form
p(a,b | s, t) = ψT Ea

s ⊗ F b
t ψ which is even not a limit of quantum

correlations in the commuting model

I Connes: There is a II1 factor, where one cannot approximate its
tracial moments by tracial moments using matrices

I NC RAG: There is a polynomial which is trace-positive on the
matricial NC cube but not an element of the corresponding
quadratic module
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Consequence for tracial optimization

Operators on finite dimensional Hilbert spaces are not sufficient

I Let f ∈ R〈X 〉

ftr =supa ∈ R s.t. Tr(f − a) ≥ 0 on K

I Choose K carefully:
should it contain only matrices or do we allow operators

I only matrices:
it might be that fsos 6= ftr even when Mtr is archimedean

I also operators:
it might be that ft = ftr but there is no flat moment matrix at all
(optimum attained only in infinite dimension)
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Summary and Outlook
I Free polynomial optimization has a variety of applications:

I quantum chemistry
I systems control
I nonlocal games
I free LMIs: quantum channels
I Weyl algebras: Schrödinger operators

I Problems/Needs
I restriction to specific dimensions
I elaborate theory of polynomial identites
I allow trace conditions in the semialgebraic set, e.g. Tr(D2) = 1
I find an optimality criterion without flat matrices

I Do research on trace-polynomials

Tr(X )X 2 + 2 Tr(X 2)X − X 2 + 2

Thank you for your attention.
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Gram matrix method

Example

f = X 2Y 2+Y 2X 2 [X ] = (X 2,XY ,YX ,Y 2)T

[X ]∗[X ] =

 X 4 X 3Y X 2YX X 2Y 2

YX 3 YX 2Y YXYX YXY 2

XYX 2 XYXY XY 2X XY 3

Y 2X 2 Y 2XY Y 3X Y 4



G =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


→ f is not sos

g = 2X 4−X 2YX−2X 2Y 2−XYX 2+XY 2X−2Y 2X 2+4Y 4

G =


2 0 −1 −2
0 0 0 0
−1 0 1 0
−2 0 0 4

 =


1 −1
0 0
−1 0
0 2

( 1 0 −1 0
−1 0 0 2

)
� 0

→ g is sos

NC SOS
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Classical multivariate moment problem
I Let K ⊆ Rn be closed.

Moment problem
Let L : R[x ]→ R be linear, L(1) = 1. Does there exist a probability
measure µ with suppµ ⊆ K such that for all f ∈ R[x ]:

L(f ) =
∫

f (a) dµ(a)?

Theorem (Riesz, Haviland)
Let K ⊆ Rn be non-empty and closed, L ∈ R[x ]∨. There exists a
measure µ supported on K such that

L(f ) =
∫

f (a) dµ(a) for all f ∈ R[x ]

if and only if L(p) ≥ 0 for all p ∈ R[X ] that are positive on K .

SOS
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Hankel matrices
I Associate to L : R〈X 〉 → R the sesquilinear form

BL : R〈X 〉 × R〈X 〉, (f ,g) 7→ L(f ∗g).

I The representing matrix for BL is its Hankel matrix

Definition
I The Hankel matrix M(L), indexed by u, v ∈ 〈X 〉, is given by

M(L)u,v := L(u∗v).

I The truncated Hankel matrix Mk (L) of degree k is the submatrix of M(L)
indexed by u, v ∈ 〈X 〉k .
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One Hankel matrix

Example

Consider R〈X ,Y 〉 with basis (1,X ,Y ,X 2,XY ,YX , . . . )

M(L) =



L(1) L(X ) L(Y ) L(X 2) L(XY ) . . .
L(X ) L(X 2) L(XY ) L(X 3) L(X 2Y ) . . .
L(Y ) L(YX ) L(Y 2) L(YX 2) L(YXY ) . . .
L(X 2) L(X 3) L(X 2Y ) L(X 4) L(X 3Y ) . . .
L(YX ) L(YX 2) L(YXY ) L(YX 3) L(YX 2Y ) . . .
L(XY ) L(XYX ) L(XY 2) L(XYX 2) L(XYXY ) . . .

...
...

...
...

...
. . .



M1(L) =

[ L(1) L(X ) L(Y )
L(X ) L(X 2) L(XY )
L(Y ) L(YX ) L(Y 2)

]

NC moment problem
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