Non-Commutative Polynomial Optimzation

Sabine Burgdorf

University of Konstanz

2nd POEMA Workshop October 2020

Warm Up

In matrix polynomial $M_2(\mathbb{R}[x])$

$$
\begin{pmatrix} 1 & 2 \ -2 & 3 \end{pmatrix} x^2 + \begin{pmatrix} 2 & 0 \ 1 & 1 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \ -1 & 0 \end{pmatrix} = \begin{pmatrix} x^2 + 2x + 1 & 2x^2 \ -2x^2 + x - 1 & 3x^2 + x \end{pmatrix}
$$

Figure free polynomial $\mathbb{R}\langle X, Y \rangle$

$$
X^2 + XY - YX + Y^2 \neq X^2 + Y^2
$$

► trace polynomial $\mathbb{R}[\text{Tr}(X^k): k \in \mathbb{N}]\langle X \rangle$

$$
\text{Tr}(X)X^2 + 2 \text{Tr}(X^2)X - X^2 + 2
$$

 \blacktriangleright ...

Warm Up

What should *X* represent?

scalars

- matrices of arbitrary size
- (bounded) operators: symmetric, anti-symmetric
- differential operators, Weyl-operators
- matrices of fixed size

This talk

I ...

Replace scalars by symmetric matrices/operators \rightarrow free polynomials

Polynomial Optimization

- \blacktriangleright $f \in \mathbb{R}[X]$ polynomial in commuting variables
- \triangleright *g*₀ = 1, *g*₁, , *g_r* ∈ ℝ[*X*] defining a semi-algebraic set:

$$
\mathcal{K}=\{\underline{a}\in\mathbb{R}^n\mid g_0(\underline{a})\geq 0,\ldots,g_r(\underline{a})\geq 0\}
$$

▶ Want to minimize *f* over *K*

$$
f_* = \inf f(\underline{a}) \qquad \text{s.t. } \underline{a} \in K
$$

= $\sup a \in \mathbb{R} \qquad \text{s.t. } f - a \ge 0 \text{ on } K$

I NP-hard

RAG helps

$$
f_*=\sup a\in\mathbb{R}\quad \text{ s.t. } f-a\geq 0 \text{ on } K
$$

$$
\blacktriangleright \ M(g) := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_j \in \mathbb{R}[\underline{X}] \}
$$

In sos relaxation (Lasserre, Parrilo)

$$
\boxed{f_{\textit{SOS}} = \sup a \in \mathbb{R} \quad \text{s.t.} \, f - a \in \mathit{M}(g)}
$$

RAG helps

$$
f_*=\sup a\in\mathbb{R}\quad \text{ s.t. } f-a\geq 0 \text{ on } K
$$

$$
\blacktriangleright \ M(g) := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_j \in \mathbb{R}[\underline{X}] \}
$$

In sos relaxation (Lasserre, Parrilo)

$$
\boxed{f_{\textit{SOS}} = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M(g)}
$$

 \blacktriangleright f_{sos} is always a lower bound but might be strict

SOS hierarchy

$$
\blacktriangleright \ M(g)_t := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_j \in \mathbb{R}[\underline{X}]_t \}
$$

In sos hierarchy (Lasserre, Parrilo)

$$
f_t = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M(g)_t \Big| \quad \text{SDP} \circledcirc
$$

 \triangleright SDP due to the Gram matrix method:

$$
f \text{ sos } \iff \exists G \succeq 0 : f(x) = [x]^T G[x]
$$

SOS hierarchy

$$
\blacktriangleright \ M(g)_t := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_j \in \mathbb{R}[\underline{X}]_t \}
$$

In sos hierarchy (Lasserre, Parrilo)

$$
\boxed{f_t = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M(g)_t} \quad \text{SDP} \odot
$$

 \triangleright SDP due to the Gram matrix method:

$$
f \text{ sos } \iff \exists G \succeq 0 : f(x) = [x]^T G[x]
$$

We have

- \blacktriangleright *f_t* ≤ *f_{t+1}* ≤ *f_{sos}* < *f_{*}*
- **►** *f_t* converges to *f*_{sos} as $t \to \infty$
- **►** Putinar: If $M(g)$ is archimedean: $f_{sos} = f_*$

Moment problem

$$
\mathit{f}_{\mathit{sos}} = \sup a \in \mathbb{R} \quad \text{s.t.} \; \mathit{f}-a \in \mathit{M}(g)
$$

\blacktriangleright dual problem

$$
\boxed{f_{mom} = \inf L(f) \quad s.t. \ L \in \mathbb{R}[\underline{x}]^{\vee}, L \geq 0 \text{ on } M(g)}
$$

 \blacktriangleright This is an SDP (up to degree bounds), using moment matrices

Moment problem

$$
\mathit{f}_{\mathit{sos}} = \sup a \in \mathbb{R} \quad \text{s.t.} \; \mathit{f}-a \in \mathit{M}(g)
$$

dual problem

$$
\boxed{f_{mom} = \inf L(f) \quad s.t. \ L \in \mathbb{R}[\underline{x}]^{\vee}, L \geq 0 \text{ on } M(g)}
$$

 \triangleright This is an SDP (up to degree bounds), using moment matrices

If optimizing *L* in f_{mom} has a **Moment representation** then

$$
f_* \geq f_{\text{SOS}} \geq f_{\text{mom}} = L(f) \geq f_*
$$

Moment representation implies exactness of relaxation

Theorem (Curto, Fialkow)

If the moment matrix of *L* is flat, then *L* has a moment representation.

Free Polynomials

- \triangleright Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle X\rangle$ with non-commuting variables X_1, \ldots, X_n
- \blacktriangleright Polynomial

$$
f=\sum_{w}f_{w}w
$$

▶ Let $A \in (S^d)^n$: $f(A) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \dots$

Free Polynomials

- \triangleright Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle X\rangle$ with non-commuting variables X_1, \ldots, X_n
- \blacktriangleright Polynomial

$$
f=\sum_{w}f_{w}w
$$

Let
$$
\underline{A} \in (\mathcal{S}^d)^n
$$
: $f(\underline{A}) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \ldots$

- **► Add involution** $*$ **on** $\mathbb{R}\langle X\rangle$
	- If fixes R and $\{X_1, \ldots, X_n\}$ pointwise

$$
\blacktriangleright X_i^* = X_i
$$

Consequence

$$
f^*f(\underline{A}) = f(\underline{A})^T f(\underline{A}) \succeq 0
$$

Free Polynomial Optimization

- \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$
- \triangleright *g*₀ = 1, *g*₁, . . . , *g_r* ∈ ℝ \langle *X* \rangle defining a semi-algebraic set:

$$
K = \{ \underline{A} \mid g_0(\underline{A}) \succeq 0, \ldots, g_r(\underline{A}) \succeq 0 \}
$$

▶ Want to minimize *f* over *K*

$$
f_* = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \geq 0 \text{ on } K
$$

What does *f* ≥ 0 mean?

Eigenvalue optimization

 \blacktriangleright Let $f \in \mathbb{R}\langle \underline{X} \rangle$

$$
f_{nc} = \inf \text{eig}(f(\underline{A})) \quad \text{s.t. } \underline{A} \in K
$$

Eigenvalue optimization

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

$$
f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \succeq 0 \text{ on } K
$$

 \blacktriangleright sos relaxation

 $\mathcal{M}_{nc}(g) := \{ p = \sum_j h^*_j g_{i_j} h_j \text{ for some } h_j \in \mathbb{R}\langle \underline{X} \rangle \}$

$$
f_{\text{sos}} = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M_{\text{nc}}(g)
$$

 \blacktriangleright Fact: $f_{sos} < f_{nc}$

Eigenvalue optimization

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

$$
f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \succeq 0 \text{ on } K
$$

sos relaxation

 $\mathcal{M}_{nc}(g) := \{ p = \sum_j h^*_j g_{i_j} h_j \text{ for some } h_j \in \mathbb{R}\langle \underline{X} \rangle \}$

$$
f_{\text{sos}} = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M_{\text{nc}}(g)
$$

 \blacktriangleright Fact: $f_{\text{soc}} < f_{\text{nc}}$

Observation: Gram matrix method still works

- ▶ Checking if $f = \sum_i h_i^* h_i$ is an SDP
- ▶ Checking if $f = \sum_j h_j^* g_{i_j} h_j$ (with degree bounds) is an SDP

Eigenvalue optimization

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

$$
f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \succeq 0 \text{ on } K
$$

▶ $M_{nc}(g)_{t} := \{ p = \sum_{j} h_j^* g_{i_j} h_j \text{ for some } h_j \in \mathbb{R}\langle \underline{X} \rangle_t \}$

Sos hierarchy (Navascués, Pironio, Acín)

$$
\boxed{ \mathit{f}_t = \sup a \in \mathbb{R} \quad \text{s.t.} \ \mathit{f} - a \in \mathit{M_{nc}(g)_t} \quad \text{SDP} \odot }
$$

Eigenvalue optimization

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

$$
f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \succeq 0 \text{ on } K
$$

$$
\blacktriangleright \ \textit{M}_{\textit{nc}}(g)_t := \{ p = \sum_j h_j^* g_{i_j} h_j \text{ for some } h_j \in \mathbb{R} \langle \underline{X} \rangle_t \}
$$

Sos hierarchy (Navascués, Pironio, Acín)

$$
f_t = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M_{nc}(g)_t \quad \text{SDP} \odot
$$

 \triangleright *f_t* ≤ *f_{t+1}* ≤ *f_{sos}* ≤ *f_{nc}* but inequalities might be strict

- **►** *f_t* converges to *f*_{sos} as $t \to \infty$
- \blacktriangleright Helton et al.: If $M_{nc}(g)$ archimedean: $f_{sos} = f_{nc}$

NC Moment problem

$$
\boxed{f_{mom} = \inf L(f) \quad \text{s.t. } L \in \mathbb{R} \langle \underline{X} \rangle^{\vee}, L \geq 0 \text{ on } M_{nc}(g)}
$$

 \triangleright This is an SDP (up to degree bounds), using \triangleright [moment matrices](#page-56-0)

NC Moment problem

$$
f_{\textit{mom}} = \inf \mathit{L}(f) \quad \text{s.t. } \mathit{L} \in \mathbb{R} \langle \underline{X} \rangle^{\vee}, \mathit{L} \geq 0 \text{ on } \mathit{M}_{\textit{nc}}(g)
$$

 \triangleright This is an SDP (up to degree bounds), using \triangleright [moment matrices](#page-56-0)

NC moment problem

For which linear form $L : \mathbb{R}\langle X \rangle \to \mathbb{R}$ exists a (finite dimensional) Hilbert space *H*, a unit vector $\phi \in H$ and a *-representation π on $B(H)$ such that for all $f \in \mathbb{R}\langle X \rangle$:

$$
L(f) = \langle \pi(f)\phi, \phi \rangle?
$$

 \triangleright Moment representation implies exactness of relaxation

Theorem (Klep et al.)

If the moment matrix of *L* is flat, then *L* has a moment representation. In this case we can also extract a fin. dim. optimizer for *f*.

Eigenvalue optimization: bonus

I Helton/McCullough: *f* 0 ⇐⇒ *f* sos

Eigenvalue optimization: bonus

I Helton/McCullough: *f* 0 ⇐⇒ *f* sos

 \triangleright proof idea: construct (GNS) a moment representation

- Assume $f \geq 0$ but not sos: separating linear form L
- \blacktriangleright induces a positive semidefinite bilinear form
- **I** Hilbert space H as completion of $\mathbb{R}\langle X\rangle/N$ with $N = \{g \in \mathbb{R} \langle \underline{X} \rangle \mid L(g^*g) = 0\}$
- **I** moment representation via $\hat{X}_i : \mathcal{H} \to \mathcal{H}, p \mapsto X_i p$
- ▶ *L*(*p*) = $\langle \hat{p}1, 1 \rangle_{\mathcal{H}} = \langle p(A)1, 1 \rangle$ for some representations *A_i* of \hat{X}_i .

Remark: positivity on matrices of a fixed size is sufficient

Eigenvalue optimization: bonus

- I Helton/McCullough: *f* 0 ⇐⇒ *f* sos
	- \triangleright proof idea: construct (GNS) a moment representation
		- Assume $f \geq 0$ but not sos: separating linear form L
		- \blacktriangleright induces a positive semidefinite bilinear form
		- **I** Hilbert space H as completion of $\mathbb{R}\langle X\rangle/N$ with $N = \{g \in \mathbb{R} \langle \underline{X} \rangle \mid L(g^*g) = 0\}$
		- **I** moment representation via $\hat{X}_i : \mathcal{H} \to \mathcal{H}, p \mapsto X_i p$
		- ▶ *L*(*p*) = $\langle \hat{p}1, 1 \rangle_{\mathcal{H}} = \langle p(A)1, 1 \rangle$ for some representations *A_i* of \hat{X}_i .
- **EXECUTE:** Positivity on matrices of a fixed size is sufficient
- If K is NC-cube or NC-ball we need just one step in the hierarchy \triangleright proof idea: Construct a flat moment matrix
- If K is NC-convex, positivity on matrices of a fixed size is sufficient

Application: Quantum Chemistry

Compute ground state energy of atoms

- Molecule of *N* electrons that can occupy *M* orbitals
- Each orbital associated with creation/anihilation operators a_i^{\dagger} *i* , *aⁱ*
- **Pairwise interaction described by parameters** h_{ijk}

$$
\min_{(a,a^{\dagger},\varphi)} \left\langle \varphi, \sum_{ijkl} h_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l \varphi \right\rangle
$$
\ns.t. $||\varphi|| = 1$
\n $\{a_i^{\dagger}, a_j\} := a_i^{\dagger} a_j + a_j a_i^{\dagger} = \delta_{ij}$
\n $\{a_i, a_j\} = \{a_i^{\dagger}, a_j^{\dagger}\} = 0$
\n $(\sum_i a_i^{\dagger} a_i - N)\varphi = 0$

Application: Systems Control

Inear closed loop system with unknown feedback $\mathcal G$

Goal Find G which stabilizes the system

Application: Systems Control

Linear closed loop system with unknown feedback $\mathcal G$

 \triangleright Goal Find G which stabilizes the system

Lyapunov₁₈₉₂

A system $\dot{x}(t) = Ax(t)$ is stable if there is a $P \succeq 0$ with $A^tP+PA \prec 0$

Lyapunov's idea extends to our problem: Riccati equations

Application: Systems Control

Linear closed loop system with unknown feedback $\mathcal G$

Math. System $\dot{\vec{x}}(t) = \vec{A}\vec{x}(t) + \vec{B}\vec{u},$ $\vec{u}(t) = \vec{c} \vec{x}(t)$

 \triangleright Goal Find G which stabilizes the system

Lyapunov₁₈₉₂

A system $\dot{x}(t) = Ax(t)$ is stable if there is a $P \succeq 0$ with $A^tP+PA \prec 0$

- \blacktriangleright Lyapunov's idea extends to our problem: Riccati equations
- Optimization problem is first a feasibility problem
- Can be refined by optimizing a specific singular value
- \triangleright For a uniform strategy to get G we have to work free of dimensions

Application: Quantum correlations

- \triangleright Entanglement is one of the key features in Quantum Information
- Bell '64:

- \blacktriangleright How to distinguish C and Q?
- *Bell-inequalities, e.g.* $E_0F_0 + E_0F_1 + E_1F_0 E_1F_1$

Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on H
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_A \otimes \mathcal{H}_B$
- $\blacktriangleright \psi$ is entangled if it is not a product state

 $\psi_{\mathbf{A}} \otimes \psi_{\mathbf{B}}$ with $\psi_{\mathbf{A}} \in \mathcal{H}_{\mathbf{A}}, \psi_{\mathbf{B}} \in \mathcal{H}_{\mathbf{B}}$

- A state $\psi \in \mathcal{H}$ can be measured
	- \triangleright outcomes *a* ∈ *A*
	- ▶ POVM: a family ${E_a}_{a \in A}$ \subseteq *B*(*H*) with $E_a \succeq 0$ and $\sum_{a \in A} E_a = 1$
	- **P** probablity of getting outcome *a* is $p(a) = \psi^T E_a \psi$.

Nonlocal bipartite correlations

- I Question sets *S*, *T*, Answer sets *A*, *B*
- No (classical) communication
- Which correlations $p(a, b \mid s, t)$ are possible? $\widehat{\{s_i\}}$

Nonlocal game: winning predicate $V : A \times B \times S \times T \rightarrow \{0, 1\}$ Winning probability (value of the game)

a b b b

$$
\omega = \sup_{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) p(a, b|s, t)
$$

=
$$
\sup_{p} \sum_{a, b, s, t} f_{abst} p(a, b | s, t)
$$

Correlations

Classical strategy C

Independent probability distributions $\{p^a_s\}_a$ and $\{p^b_t\}_b$:

$$
p(a,b \mid s,t) = p_s^a \cdot p_t^b
$$

shared randomness: allow convex combinations

$$
\omega = \sup_{(x,y)} \sum_{a,b,s,t} f_{abst} x_s^a y_t^b
$$

Correlations

Classical strategy C

Independent probability distributions $\{p^a_s\}_a$ and $\{p^b_t\}_b$:

$$
p(a,b \mid s,t) = p_s^a \cdot p_t^b
$$

shared randomness: allow convex combinations

Quantum strategy Q*^c*

POVMs $\{E_{s}^{a}\}_{a}$ and $\{F_{t}^{b}\}_{b}$ on a joint Hilbert space, but $[E_{s}^{a},F_{t}^{b}]=0$:

$$
p(a,b \mid s,t) = \psi^T (E_s^a \cdot F_t^b) \psi
$$

$$
\omega = \sup_{(X,Y,\psi)} \sum_{a,b,s,t} f_{\text{abst}} X_{s}^{a} Y_{t}^{b}
$$

CHSH Game

▶ Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$

► Alice & Bob win, if $a + b \equiv st \mod 2$

CHSH Game

▶ Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$

Alice & Bob win, if $a + b \equiv st \mod 2$

$$
\therefore \omega_{\mathcal{C}} = \frac{3}{4}
$$

\n
$$
\therefore \omega_{\mathcal{Q}_{c}} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854
$$

CHSH Game

- Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$
- Alice & Bob win, if $a + b \equiv st \mod 2$

$$
\blacktriangleright \omega_{\mathcal{C}} = \frac{3}{4}
$$

$$
\triangleright \omega_{\mathcal{Q}_c} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854
$$

- lower bounds by brute force
- upper bounds via SOS hierarchies of operator formulation:
- ▶ 2 measurements with 2 outcomes each: E_s^0 , E_s^1 , F_t^0 , F_t^1
- ▶ Setting $E_s := E_s^0 E_s^1$, $F_t := F_t^0 F_t^1$: CHSH inequality

$$
f_{CHSH}:=E_0F_0+E_0F_1+E_1F_0-E_1F_1
$$

Optimizing f_{CHSH} over variants of C , \mathcal{Q}_c give ω_c , ω_{Q_c}

More correlations

Quantum strategy Q*^c*

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on a joint Hilbert space, but $[E^a_s,F^b_t]=0$:

$$
p(a,b \mid s,t) = \psi^T (E_s^a \cdot F_t^b) \psi
$$

More correlations

Quantum strategy Q*^c*

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on a joint Hilbert space, but $[E^a_s,F^b_t]=0$:

$$
p(a,b \mid s,t) = \psi^T (E_s^a \cdot F_t^b) \psi
$$

Quantum strategy Q

 $\mathsf{POVMs}\ \{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces $\mathcal{H}_\mathcal{A}, \mathcal{H}_\mathcal{B}, \, \psi \in \mathcal{H}_\mathcal{A} \otimes \mathcal{H}_\mathcal{B}$: $p(\textit{\textbf{a}}, \textit{\textbf{b}} \mid \textit{\textbf{s}}, \textit{\textbf{t}}) = \psi^{\mathsf{T}}(\textit{\textbf{E}}_{\textit{\textbf{s}}}^{\textit{\textbf{a}}} \otimes \textit{\textbf{F}}_{\textit{\textbf{t}}}^{\textit{\textbf{b}}}) \psi$

More correlations

Quantum strategy Q*^c*

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on a joint Hilbert space, but $[E^a_s,F^b_t]=0$:

$$
p(a,b \mid s,t) = \psi^T (E_s^a \cdot F_t^b) \psi
$$

Quantum strategy Q

 $\mathsf{POVMs}\ \{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces $\mathcal{H}_\mathcal{A}, \mathcal{H}_\mathcal{B}, \, \psi \in \mathcal{H}_\mathcal{A} \otimes \mathcal{H}_\mathcal{B}$:

$$
p(a,b \mid s,t) = \psi^{\mathcal{T}}(E_s^a \otimes F_t^b)\psi
$$

- ▶ locality: $(E_s^a \otimes 1)(1 \otimes F_t^b) = (1 \otimes F_t^b)(E_s^a \otimes 1)$
- If $\psi = \psi_A \otimes \psi_B$ then we have classical correlation

Fact

$$
\mathcal{C} \subseteq \mathcal{Q} \subseteq \text{cl}(\mathcal{Q}) \subseteq \mathcal{Q}_c
$$

Tsirelson's problem

Tsirelson's problem

Is $\mathcal{Q} = \mathcal{Q}_c$ or at least $\text{cl}(\mathcal{Q}) = \mathcal{Q}_c$?

Fact

$C \subseteq Q \subseteq \text{cl}(\mathcal{Q}) \subseteq \mathcal{Q}_c$

- \blacktriangleright Bell: $C \neq Q$
- **D** closure conjecture [Slofstra '16]: $\mathcal{Q} \neq \text{cl}(\mathcal{Q})$
- weak Tsirelson [Slofstra '16]: $\mathcal{Q} \neq \mathcal{Q}_c$

Tsirelson's problem

Tsirelson's problem

Is $\mathcal{Q} = \mathcal{Q}_c$ or at least $\text{cl}(\mathcal{Q}) = \mathcal{Q}_c$?

Fact

 $C \subset \mathcal{Q} \subset \text{cl}(\mathcal{Q}) \subset \mathcal{Q}_c$

 \blacktriangleright Bell: $C \neq Q$

- ▶ closure conjecture [Slofstra '16]: $\mathcal{Q} \neq \text{cl}(\mathcal{Q})$
- **I** weak Tsirelson [Slofstra '16]: $\mathcal{Q} \neq \mathcal{Q}_c$

Theorem (Ji, Natarajan, Vidick, Wright, Yuen,'20) $cl(Q) \neq Q_c$

Ozawa: (strong) Tsirelson problem \iff Connes conjecture

Connes embedding conjecture

Connes embedding conjecture

If ω is a free ultrafilter on N and F is a II₁ factor with separable predual, then ${\cal F}$ can be embedded into the ultrapower ${\cal R}^\omega.$

- \blacktriangleright F is a II₁ factor if F is a subsalgebra of $B(H)$ for an infinite dimensional Hilbert space H and allows for a finite tracial state
- \triangleright R is the hyperfinite II₁ factor, i.e. it can be constructed as limit of matrix algebras

 \blacktriangleright *F* embeds into \mathcal{R}^{ω} iff it allows matricial microstates, i.e. tracial moments can be approximated by matricial tracial moments: Let $X = \{A_1, \ldots, A_n\} \subseteq \mathcal{F}_{sa}$ be finite, then $\forall k \in \mathbb{N}, \forall \varepsilon > 0$ $\exists s \in \mathbb{N}, \exists B_1, \ldots, B_n \in M_s(\mathbb{C}): |\tau(A_{i_1} \ldots A_{i_k}) - \text{Tr}(B_{i_1} \ldots B_{i_k})| < \varepsilon.$

Connes embedding conjecture

Connes embedding conjecture

If ω is a free ultrafilter on N and F is a II₁ factor with separable predual, then ${\cal F}$ can be embedded into the ultrapower ${\cal R}^\omega.$

- \blacktriangleright F is a II₁ factor if F is a subsalgebra of $B(H)$ for an infinite dimensional Hilbert space H and allows for a finite tracial state
- \triangleright R is the hyperfinite II₁ factor, i.e. it can be constructed as limit of matrix algebras

 \blacktriangleright *F* embeds into \mathcal{R}^{ω} iff it allows matricial microstates, i.e. tracial moments can be approximated by matricial tracial moments: Let $X = \{A_1, \ldots, A_n\} \subseteq \mathcal{F}_{sa}$ be finite, then $\forall k \in \mathbb{N}, \forall \varepsilon > 0$ $\exists s \in \mathbb{N}, \exists B_1, \ldots, B_n \in M_s(\mathbb{C}): |\tau(A_{i_1} \ldots A_{i_k}) - \text{Tr}(B_{i_1} \ldots B_{i_k})| < \varepsilon.$

The conjecture is false

Connes and NC RAG

► Let $f \in \mathbb{R}\langle X \rangle_{sym}$ ▶ $M_t := \{ \sum_i h_i^*(1 - X_i^2)h_i \mid h_i \in \mathbb{R}\langle \underline{X} \rangle \} + [\mathbb{R}\langle \underline{X} \rangle, \mathbb{R}\langle \underline{X} \rangle]$ **►** $K = \{ \underline{A} \mid A_i \subseteq N, N \text{ finite vN algebra : } \mathbf{1} - A_i^2 \succeq 0 \text{ for all } i \in [n] \}.$

Theorem (Klep, Schweighofer)

The following are equivalent

1 *f* trace-positive on *K*,

$$
2 \ \forall \varepsilon > 0 : f + \varepsilon \in M_{tr}.
$$

Theorem (Klep, Schweighofer, (& B., Dykema))

Connes' conjecture holds iff *K* can be replaced by

$$
\mathcal{K}_{fin} := \{ \underline{A} \mid A_i \subseteq M_{s}(\mathbb{R}) \text{ for some } s \in \mathbb{N} : 1 - A_i^2 \succeq 0 \text{ for all } i \in [n] \}.
$$

Consequences

Operators on finite dimensional Hilbert spaces are not sufficient

- \triangleright Tsirelson: There is a quantum correlation of the form $p(a,b \mid s,t) = \psi^T E^a_s \otimes F^b_t \psi$ which cannot be written as $p(a, b \mid s, t) = G_s^a \otimes H_t^b$ with commuting operators
- \triangleright strong Tsirelson: There is a quantum correlation of the form $p(a,b \mid s,t) = \psi^T E^a_s \otimes F^b_t \psi$ which is even not a limit of quantum correlations in the commuting model
- \triangleright Connes: There is a II₁ factor, where one cannot approximate its tracial moments by tracial moments using matrices
- \triangleright NC RAG: There is a polynomial which is trace-positive on the matricial NC cube but not an element of the corresponding quadratic module

Consequence for tracial optimization

Operators on finite dimensional Hilbert spaces are not sufficient

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

f^{*tr*} = sup *a* ∈ ℝ s.t. Tr(*f* − *a*) ≥ 0 on *K*

▶ Choose *K* carefully: should it contain only matrices or do we allow operators

Consequence for tracial optimization

Operators on finite dimensional Hilbert spaces are not sufficient

 \blacktriangleright Let $f \in \mathbb{R}\langle X \rangle$

 f_{tr} = sup $a \in \mathbb{R}$ s.t. Tr $(f - a) \geq 0$ on K

▶ Choose *K* carefully: should it contain only matrices or do we allow operators

- \triangleright only matrices: it might be that $f_{sos} \neq f_{tr}$ even when M_{tr} is archimedean
- \blacktriangleright also operators: it might be that $f_t = f_t$ but there is no flat moment matrix at all (optimum attained only in infinite dimension)

Summary and Outlook

- \blacktriangleright Free polynomial optimization has a variety of applications:
	- \blacktriangleright quantum chemistry
	- \blacktriangleright systems control
	- \blacktriangleright nonlocal games
	- \blacktriangleright free LMIs: quantum channels
	- \blacktriangleright Weyl algebras: Schrödinger operators

Summary and Outlook

- \blacktriangleright Free polynomial optimization has a variety of applications:
	- \blacktriangleright quantum chemistry
	- \blacktriangleright systems control
	- \blacktriangleright nonlocal games
	- \blacktriangleright free LMIs: quantum channels
	- \blacktriangleright Weyl algebras: Schrödinger operators
- \blacktriangleright Problems/Needs
	- \blacktriangleright restriction to specific dimensions
	- \blacktriangleright elaborate theory of polynomial identites
	- lallow trace conditions in the semialgebraic set, e.g. $Tr(D^2) = 1$
	- find an optimality criterion without flat matrices

Summary and Outlook

- \blacktriangleright Free polynomial optimization has a variety of applications:
	- \blacktriangleright quantum chemistry
	- \blacktriangleright systems control
	- \blacktriangleright nonlocal games
	- \blacktriangleright free LMIs: quantum channels
	- \blacktriangleright Weyl algebras: Schrödinger operators
- \blacktriangleright Problems/Needs

27

- \blacktriangleright restriction to specific dimensions
- \blacktriangleright elaborate theory of polynomial identites
- lallow trace conditions in the semialgebraic set, e.g. $Tr(D^2) = 1$
- \blacktriangleright find an optimality criterion without flat matrices
- Do research on trace-polynomials

$$
Tr(X)X^2 + 2 Tr(X^2)X - X^2 + 2
$$

Thank you for your attention.

Example

 $f = X^2Y^2 + Y^2X$

$$
[X] = (X2, XY, YX, Y2)T
$$

$$
[X]*[X] = \begin{pmatrix} X4 & X3Y & X2YX & X2Y2 \\ YX3 & YX2Y & YXYX & YXY2 \\ XYX2 & XYXY & XY2X & XY3 \\ Y2X2 & Y2XY & Y3X & Y4 \end{pmatrix}
$$

Example

 $f = X^2Y^2 + Y^2X$

$$
[X] = (X2, XY, YX, Y2)T
$$

$$
[X]*[X] = \begin{pmatrix} X4 & X3Y & X2YX & X2Y2 \\ YX3 & YX2Y & YXYX & YXY2 \\ XYX2 & XYXY & XY2X & XY3 \\ Y2X2 & Y2XY & Y3X & Y4 \end{pmatrix}
$$

Example $f = X^2Y^2 + Y^2X$ $G =$ $\sqrt{ }$ $\overline{}$ 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 \setminus $\Bigg\}$

$$
\begin{bmatrix} X \end{bmatrix} = (X^2, XY, YX, Y^2)^T
$$

\n
$$
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} X^1 & X^3Y & X^2YX & X^2Y^2 \\ (X^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ Y^2X^2 & Y^2XY & Y^3X & Y^4 \end{bmatrix}
$$

 \rightarrow f is not sos

Example $f = X^2Y^2 + Y^2X$ 2 $[X] = (X^2, XY, YX, Y^2)^T$ $[X]^*$ [*X*] = $\sqrt{ }$ $\overline{ }$ *X* ⁴ *X* ³*Y X*²*YX X* 2*Y* 2 *YX*³ *YX*²*Y YXYX YXY*² *XYX*² *XYXY XY*²*X XY*³ *Y* 2*X* ² *Y* ²*XY Y*³*X Y*⁴ \setminus $G = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $[X]^*[X] = \begin{bmatrix} YX^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ YX^3 & YX^2 & XY^2X & XY^4 \end{bmatrix}$ $\sqrt{ }$ $\overline{}$ 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 \setminus $\Bigg\}$

 \rightarrow f is not sos

g = 2*X* ⁴−*X* ²*YX*−2*X* 2*Y* ²−*XYX*2+*XY*2*X*−2*Y* 2*X* ²+4*Y* 4

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

 \setminus

 $\Bigg\}$

2 $[X] = (X^2, XY, YX, Y^2)^T$ $[X]^*$ [*X*] = $\sqrt{ }$ $\overline{ }$ *X* ⁴ *X* ³*Y X* ²*YX X* 2*Y* 2 *YX*³ *YX*²*Y YXYX YXY*² *XYX*² *XYXY XY*²*X XY*³ *Y* 2*X* ² *Y* ²*XY Y*³*X Y* 4 \setminus $G = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $[X]^*[X] = \begin{bmatrix} YX^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ YX^3 & YX^2 & XY^2X & XY^4 \end{bmatrix}$

 \rightarrow f is not sos

Example

 $\sqrt{ }$

 $\overline{}$

 $f = X^2Y^2 + Y^2X$

g = 2*X*⁴ − *X*² Y*X*−2*X*² Y² − *XYX*² + *XY*² X−2Y² X² + 4Y⁴

2 $[X] = (X^2, XY, YX, Y^2)^T$ $[X]^*$ [*X*] = $\sqrt{ }$ $\overline{ }$ *X* ⁴ *X* ³*Y X* ²*YX X* 2*Y* 2 *YX*³ *YX*²*Y YXYX YXY*² *XYX*² *XYXY XY*²*X XY*³ *Y* 2*X* ² *Y* ²*XY Y*³*X Y* 4 \setminus $G = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $[X]^*[X] = \begin{bmatrix} YX^3 & YX^2Y & YXYX & YXY^2 \\ XYX^2 & XYXY & XY^2X & XY^3 \\ YX^3 & YX^2 & XY^2X & XY^4 \end{bmatrix}$ 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 \setminus $\Bigg\}$

 \rightarrow f is not sos

Example

 $\sqrt{ }$

 $\overline{}$

 $f = X^2Y^2 + Y^2X$

$$
g = 2X^4 - X^2 YX - 2X^2 Y^2 - XYX^2 + XY^2 X - 2Y^2 X^2 + 4Y^4
$$

\n
$$
G = \begin{pmatrix} 2 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ -1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 2 \end{pmatrix} \succeq 0
$$

 \rightarrow *g* is sos

Classical multivariate moment problem

Let $K \subseteq \mathbb{R}^n$ be closed.

Moment problem

Let $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$ be linear, $L(1) = 1$. Does there exist a probability measure μ with supp $\mu \subseteq K$ such that for all $f \in \mathbb{R}[\underline{x}]$:

$$
L(f) = \int f(\underline{a}) \, d\mu(\underline{a})?
$$

Theorem (Riesz, Haviland)

Let $K \subseteq \mathbb{R}^n$ be non-empty and closed, $L \in \mathbb{R}[\underline{x}]^\vee$. There exists a measure μ supported on K such that

$$
\mathcal{L}(f) = \int f(\underline{a}) \, \mathrm{d}\mu(\underline{a}) \text{ for all } f \in \mathbb{R}[\underline{x}]
$$

if and only if $L(p) \geq 0$ for all $p \in \mathbb{R}[\underline{X}]$ that are **positive** on *K*.

Hankel matrices

Associate to $L : \mathbb{R}\langle X \rangle \to \mathbb{R}$ the sesquilinear form

 $B_L: \mathbb{R}\langle \underline{X}\rangle \times \mathbb{R}\langle \underline{X}\rangle, (f, g) \mapsto L(f^*g).$

 \blacktriangleright The representing matrix for B_l is its Hankel matrix

Hankel matrices

Associate to $L : \mathbb{R}\langle X \rangle \to \mathbb{R}$ the sesquilinear form

 $B_L: \mathbb{R}\langle \underline{X}\rangle \times \mathbb{R}\langle \underline{X}\rangle, (f, g) \mapsto L(f^*g).$

 \blacktriangleright The representing matrix for B_l is its Hankel matrix

Definition

▶ The Hankel matrix $M(L)$, indexed by $u, v \in \langle X \rangle$, is given by

$$
M(L)_{u,v}:=L(u^*v).
$$

The truncated Hankel matrix $M_k(L)$ of degree *k* is the submatrix of $M(L)$ indexed by $u, v \in \langle X \rangle_k$.

One Hankel matrix

Example

Consider $\mathbb{R}\langle X, Y \rangle$ with basis $(1, X, Y, X^2, XY, YX, \dots)$

$$
M(L) = \begin{bmatrix} L(1) & L(X) & L(Y) & L(X^2) & L(XY) & \dots \\ L(X) & L(X^2) & L(XY) & L(X^3) & L(X^2Y) & \dots \\ L(Y) & L(YX) & L(Y^2) & L(YX^2) & L(YXY) & \dots \\ L(X^2) & L(X^3) & L(X^2Y) & L(X^4) & L(X^3Y) & \dots \\ L(YX) & L(YX^2) & L(YXY) & L(YX^3) & L(YX^2Y) & \dots \\ L(XY) & L(XYX) & L(XY^2) & L(XYX^2) & L(XYXY) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{bmatrix}
$$

One Hankel matrix

Example

Consider $\mathbb{R}\langle X, Y \rangle$ with basis $(1, X, Y, X^2, XY, YX, \dots)$

$$
M(L) = \begin{bmatrix} L(1) & L(X) & L(Y) & L(X^2) & L(XY) & \dots \\ L(X) & L(X^2) & L(XY) & L(X^3) & L(X^2Y) & \dots \\ L(Y) & L(YX) & L(Y^2) & L(YX^2) & L(YXY) & \dots \\ L(X^2) & L(X^3) & L(X^2Y) & L(X^4) & L(X^3Y) & \dots \\ L(YX) & L(YX^2) & L(YXY) & L(YX^3) & L(YX^2Y) & \dots \\ L(XY) & L(XYX) & L(XY^2) & L(XYX^2) & L(XYXY) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}
$$

$$
M_1(L) = \left[\begin{array}{ccc} L(1) & L(X) & L(Y) \\ L(X) & L(X^2) & L(XY) \\ L(Y) & L(YX) & L(Y^2) \end{array} \right]
$$