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Introduction

POEMA
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Topics

real root counting and generalizations (moments)
quantifier elimination
positivity and sums of squares: non-constructive proof of
Hilbert 17th problem (sums of squares)
effectivity and complexity
critical point method and applications (extremal points)
elementary recursive solution to Hilbert 17th problem
discussion : Coq, real reals
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Real root counting

How many roots for a real polynomial ?
A basic algorithmic problem
real means with coefficients in a real closed field R with
algebraic closure R[i] = C. Real closed = totally ordered
with Intermediate Value Theorem (IVT) for polynomials.
Descartes’s law of sign, upper bound
Sturm using euclidean division of P and P ′

Hermite using the signature of a quadratic form with
entries the Newton sums (moments)
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Hermite’s quadratic form (moments)

P univariate monic polynomial,

Ni =
∑

x∈Zer(P,C)

µ(x)x i ,

where µ(x) is the multiplicity of x

Herm(P) =



N0 N1 . . . . . . Np−1

N1 . . . . . . Np−1 Np

. . . . . . Np−1 Np . . .

. . . Np−1 Np . . .

. . . Np−1 Np . . . . . .

Np−1 Np . . . . . . N2p−2
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Hermite’s quadratic form

Proposition

P = apX p + ap−1X p−1 + · · ·+ a1X + a0, ap = 1. Then for any i

(p − i)ap−i = apNi + · · ·+ a0Ni−p, (1)

with the convention ai = Ni = 0 for i < 0.

Proposition

The signature of the Hermite quadratic defined by Herm(P) is
the number of real roots of P.

Hint : complex conjugate roots contribute for a difference of two
squares.
Note: the determinant of the Hermite matrix is the discriminant
of P.
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Tarsky query

what is the Tarski query ?

TaQu(P,Q) =
∑

x |P(x)=0

sign(Q(x))

difference between the number of (real) roots where Q is
positive and the number of (real) roots where Q is negative
number of real roots is a special case (take Q = 1)
signature of generalized Hermite using the signature of a
quadratic form with entries linear combinations of the
Newton sums
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Generalized Hermite’s quadratic form

Ni(P,Q) =
∑

x∈Zer(P,C)

µ(x)Q(x)x i ,

where µ(x) is the multiplicity of x .
Herm(P,Q)i,j = Ni+j−2(P,Q) and Herm(P,Q) the associated
quadratic form. Entries are linear combinations of moments
using the coefficients of Q.

Proposition
The signature of the generalized Hermite quadratic form
Herm(P,Q) is the Tarski query of P and Q :

TaQu(P,Q) =
∑

x |P(x)=0

sign(Q(x))

Hint : complex conjugate roots contribute for a difference of two
squares.
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Computation of Tarski query

Determined by the signs of the principal minors of
Herm(P,Q).
In general, the signature is NOT determined by the signs of
the principal minors but Hermite matrix is special
can be computed in quasi linear time (Õ(d) where d is a
estimating the degree), with bit size well controlled, using
subresultants and remainders rather than minors
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Sign determination

computing 3 Tarsk-queries

TaQu(P,1),TaQu(P,Q),TaQu(P,Q2)

one can easily compute 3 quantities :
the number of roots of P where Q > 0,
the number of roots of P where Q < 0,
the number of roots of P where Q = 0.

Gives in particular the list of signs of Q realized at the roots
of P
base for naive sign determination: compute the list of
realizable sign conditions of a family of polynomials
Q1, . . . ,Qs at the roots of P by an algorithm using Tarski
queries of all products of the Qi and Q2

i

sign determination can be improved, using Tarski queries
of a few products of the Qi and Q2

i (and not all of them)
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Quantifier elimination

What is quantifier elimination ?
High school mathematics

∃ x ax2 + bx + c = 0,a 6= 0

⇐⇒
b2 − 4ac ≥ 0,a 6= 0

If true in a real closed field containing R, is true in R !
Valid for any formula, due to Tarski
eliminate one variable after the other
”parametric sign determination” : compute the sign
conditions on the parameters fixing the realizable sign
conditions of a list of (parametric) polynomials Q1, . . . ,Qs
at the roots of (a parametric polynomial) P, using Tarski
queries of all products of the Qi and Q2

i .
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Positivity and sums of squares

Is a polynomial with real coefficients taking only non
negative values a sum of squares of polynomials?
Yes if the number of variables is 1.
Hint : decompose the polynomial in powers of irreducible
factors: degree two factors (corresponding to complex
roots) are sums of squares, degree 1 factors
(corresponding to real roots appear with even degree)
Yes if the degree is 2.
Hint: a quadratic form taking only non negative values is a
sum of squares of linear polynomials
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Positivity and sums of squares

Is a non-negative polynomial a sum of squares of
polynomials?
Yes if the number of variables is 1.
Yes if the degree is 2.
Also if the number of variables is 2 and the degree is 4
No in general.
First explicit counter-example Motzkin ’69

1 + X 4Y 2 + X 2Y 4 − 3X 2Y 2

takes only non negative values and is not a sum of square
of polynomials.
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Motzkin’s counter-example (degree 6, 2 variables)

M = 1 + X 4Y 2 + X 2Y 4 − 3X 2Y 2

M takes only non negative values. Hint: arithmetic mean is
always at least geometric mean.
M is not a sum of squares. Hint : try to write it as a sum of
squares of polynomials of degree 3 and check that it is
impossible.
Example: no monomial X 3 can appear in the sum of
squares. Etc ...
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Hilbert 17th problem

Reformulation proposed by Minkowski.
Question Hilbert ’1900.
Is a a non-negative polynomial a sum of squares of rational
functions ?
Artin ’27: Affirmative answer. Non-constructive.
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Outline of Artin’s proof

Suppose P is not a sum of squares of rational functions.
Sums of squares form a proper cone of the field of rational
functions, and do not contain P ( a cone contains squares
and is closed under addition and multiplication, a proper
cone does not contain −1).
Using Zorn’s lemma, get a maximal proper cone of the field
of rational functions which does not contain P. Such a
maximal cone defines a total order on the field of rational
functions.
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Outline of Artin’s proof

Suppose P is not a sum of squares of rational functions.
Sums of squares form a proper cone of the field of rational
functions, and does not contain P .
Using Zorn, get a total order on the field of rational
functions which does not contain P.
A real closed field is a totally ordered field where IVT holds
(Intermediate Value Theorem for polynomials)
Every totally ordered field has a real closure.
Taking the real closure of the field of rational functions for
this order, get a field in which P takes negative values
(when evaluated at the ”generic point” = the point
(X1, . . . ,Xk )).
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Outline of Artin’s proof

Suppose P is not a sum of squares of rational functions.
Sums of squares form a proper cone of the field of rational
functions, and does not contain P .
Using Zorn, get a total order on the field of rational
functions which does not contain P.
Taking the real closure of the field of rational functions for
this order, get a real closed field in which P takes negative
values (when evaluated at the ”generic point” = the point
(X1, . . . ,Xk )).
Then P takes negative values over the reals. First instance
of a transfer principle in real algebraic geometry. Based on
Sturm’s theorem, or Hermite quadratic form.
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Transfer principe

A statement involving elements of R which is true in a real
closed field containing R (such as the real closure of the
field of rational functions for a chosen total order) is true in
R.
Not any statement, only ”first order logic statement”.
Example of such statement

∃x1 . . . ∃xk P(x1, . . . , xk ) < 0

is true in a real closed field containing R if and only if it is
true in R
Special case of quantifier elimination.
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What about computations ?

Existence of effective procedures ?
real root counting and Tarski queries (by Hermite): YES
sign determination by Tarski queries : YES

quantifier elimination : YES, parametric sign determination
(Tarski’s paper was supported by the Rand corporation)
Hilbert 17 th problem : NO

checking whether a given polynomial is everywhere
nonnegative : YES (by quantifier elimination)
providing a representation as a sum of squares: NO (Artin
notes that his proof is very indirect, that effectivity is
desirable but difficult).

Note the ordered base field must be ”discrete”: it is possible to
decide the sign of an element, i.e. not over the ”real” reals !
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What about computations ?

Complexity bounds ?
real root counting and Tarski queries quasi linear in the
degree
sign determination is polynomial in d and s
Tarski’s quantifier elimination : primitive recursive.
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Real algebraic numbers: Thom’s encodings

a real root of a polynomaial is characterized by the signs
taken by the derivatives at the root
signed determination can be used to compute the Thom
encodings taking for Q1, . . . ,Qs the derivatives

Marie-Françoise Roy Université de Rennes 1 Real algebraic geometry and computations, an intricated history



Cylindrical decomposition

Collins Cylindrical Algebraic Decomposition : doubly
exponential in number of variables, polynomial in degre
and number of polyomials. Use of subresultants controls
degree growth and combinatorial explosion.
doubly exponential is big! Computations are impractical for
significant examples in more than two variables
The proof uses the continuity of the roots and the notion of
connected component
recent variant of CAD [PR] using Thom encoding and sign
determination. The proof is purely algebraic.
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Better complexity bounds ?

quantifier elimiation: project blocks of variables in one step
using the critical point method initiated by [GV]

Figure: Critical points in the X -direction
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The critical point method

RUR given a finite number of points in Rk is is possible to
express them as the values of a rational function at the
roots of a univariate polynomial (for which we can use
Thom encodings)
given a smooth and bounded hypersurface, a sweeping
family of parallel hyperplanes touches the hyoersurface in
a finite single exponential number of points
need to introduce (a fixed number of) infinitesimals to treat
singular cases ! Computations are impractical except in
”generic situations”.
An infinitesimal should not be consider as an extra variable
in the computations..
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Applications of the critical point method

quantifier elimination method follows: parametric block
elimination, doubly exponential in the number of blocks
existential theory of the reals, single exponential (only one
block of existential quantifiers)
sampling: find a point (at least) in every semi-algebraically
connected component
road map algorithm (including ”baby step giant step” see
[BRSS], ”divide and conquer” roadmap [SS],[BR])
covering by contractible sets: parametrized road map
description of connected components
quantitative curve selection lemma
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Curve selection lemma

find a curve entering from a point of the closure of S̄ inside
S
quantitative version s,d , k a bound on the number, the
degree and the number of variables of the polynomials
describing a semi-algebraic set S and a point x in S̄,
construct a semi-algebraic path starting at x and entering
in S with a description of degree (O(d)3k+3,O(d)k ),
improvement on previous results by [JK]
strategy: ”same thing” as finding a point in a
semi-algebraic set !
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Curve selection lemma

classical proof: take a sphere of infinitesimal radius ε
around x , intersect it with S,pick up a point x(ε), replace ε
by a small enough t0 and get a little path x(t) defined on
(0, t0] starting from x and entering S
quantitative version: do the same, finding the point by the
(critical point) sampling algorithm, estimating the degree of
the point x(ε) also with respect to the variable ε see [BR1]
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Hilbert’s 17th problem made effective

Two kinds of degree bounds
primitive recursive degree bounds. Starting from 0 and
successor, the recursion scheme makes it possible to build
successively +, ×, f1(n) = 2n,then f2(n) = 22n

...
g(n) = fn(2) (no fixed level of exponentiations).
elementary recursive degree bounds: only functions with a
fixed level of exponentiations. Single exponential (one
level), doubly exponential (two levels)... five levels of
exponentials ...
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Two kinds of degree bounds

• Kreisel ’57 - Daykin ’61 - Lombardi ’90 - Schmid ’00:
Constructive proofs primitive recursive degree bounds on k
and d = deg P.

• Our work Lombardi, Perrucci, R. ’14: another constructive
proof elementary recursive degree bound:

222d4k

.
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Construct specific algebraic identities expressing that

a real polynomial of odd degree has a real root
a real polynomial has a complex root (by Laplace’s proof)
Tarski queries computed by Hermite quadratic forms
the Sylvester’s inertia law for quadratic forms is valid
realizable sign conditions for a family of univariate
polynomials at the roots of a polynomial, fixed by sign of
minors of Hermite quadratic forms (uses subresultants
Thom’s encoding, and sign determination),
realizable sign conditions for P ⊂ K[x1, . . . , xk ] are fixed by
list of non empty sign conditions for
Proj(P) ⊂ K[x1, . . . , xk−1] : efficient projection method
using only algebra

and at the end produce a sum of squares, with elementary
recursive complexity (tower of five exponentials) !
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Discussion: Coq

Proving in Coq that the theorems in [BPR] Chapter 2 are
correct, Cyril Cohen found little mistakes in proofs, and
even a non-constructive proof. More interestingly, his work
led us to simplify several proofs (simpler base case for
induction on remainder sequence), and make (improved)
sign determination much more explicit.
Working group on constructive real algebraic geometry
with Assia Mahboubi, Henri Lombardi, Cyril Cohen, Michel
Coste, and (most often not attending) Thierry Coquand,
Daniel Perrucci and Saugata Basu. No paper in common
at that point but papers by subgroups.
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Discussion: real reals

Main open problem (Henri Lombardi is insisting): how to
do real real algebraic geometry (over the real numbers)
in particular trichotomy is not valid
impossible to find the number of real roots of X 2 + ε if the
sign of ε is not known
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