Moment problem in infinitely many variables

November 12, 2020

Abstract

In this talk, we present the moment problem for the polynomial algebra $A:=$ $\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$ in an arbitrary number of variables $x_{i}, i \in \Omega$. We introduce constructibly Radon measures on its character space \mathbb{R}^{Ω}, and proceed to investigate their relationship to positive linear functionals on A. The main tool is to exploit the localisation $B=B_{\Omega}:=\mathbb{R}\left[x_{i}, \left.\frac{1}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$ of A. We show that positive linear functionals on B_{Ω} correspond bijectively to constructibly Radon measures on \mathbb{R}^{Ω}, and that the moment problem for A_{Ω} reduces to understanding the extensions of a positive linear functional on A_{Ω} to a positive linear functional on B_{Ω}.

We observe that A (resp. B) is the inductive limit of the \mathbb{R}-algebras A_{I} (resp., B_{I}), I running through all finite subsets of Ω. So many questions about A and B reduce to the case where Ω is finite. This last observation is exploited and formalised as the projective limit approach to the moment problem (see M. Infusino 's talk), connecting in particular constructibly Radon measures to cylindrical measures. This is joint work with Mehdi Ghasemi and Murray Marshall.

Salma Kuhlmann: FB Mathematik und Statistik, Schwerpunkt Reelle Geometrie \& Algebra, Universität Konstanz, Germany. Email: salma.kuhlmann@uni-konstanz.de

