Moment problem in infinitely many variables

November 12, 2020

Abstract

In this talk, we present the moment problem for the polynomial algebra $A := \mathbb{R}[x_i \mid i \in \Omega]$ in an arbitrary number of variables $x_i, i \in \Omega$. We introduce constructibly Radon measures on its character space \mathbb{R}^{Ω} , and proceed to investigate their relationship to positive linear functionals on A. The main tool is to exploit the localisation $B = B_{\Omega} := \mathbb{R}[x_i, \frac{1}{1+x_i^2} \mid i \in \Omega]$ of A. We show that positive linear functionals on B_{Ω} correspond bijectively to constructibly Radon measures on \mathbb{R}^{Ω} , and that the moment problem for A_{Ω} reduces to understanding the extensions of a positive linear functional on A_{Ω} to a positive linear functional on B_{Ω} .

We observe that A (resp. B) is the inductive limit of the \mathbb{R} -algebras A_I (resp., B_I), I running through all finite subsets of Ω . So many questions about A and B reduce to the case where Ω is finite. This last observation is exploited and formalised as the *projective limit approach* to the moment problem (see M. Infusino 's talk), connecting in particular constructibly Radon measures to cylindrical measures. This is joint work with Mehdi Ghasemi and Murray Marshall.

Salma Kuhlmann: FB Mathematik und Statistik, Schwerpunkt Reelle Geometrie & Algebra, Universität Konstanz, Germany. Email: salma.kuhlmann@uni-konstanz.de